Skip to main content

Advertisement

Log in

Appendicularians and copepods from Scotia Bay (Laurie island, South Orkney, Antarctica): fluctuations in community structure and diversity in two contrasting, consecutive summers

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Coastal Antarctic waters involve habitats of high primary and secondary production with a remarkable sensitivity to environmental changes on different spatio-temporal scales. The current study is the first comprehensive approach to the spatial distribution and the fluctuations in abundance, biomass, community structure, and diversity of the mesozooplankton from different habitats located in Scotia Bay in summers: 2014 and 2015, characterized by a different timing in seasonal sea ice retreat. Mean seawater temperature and abundances of calanoids, cyclopoids, nauplii, and appendicularians were one order of magnitude higher in summer 2014. Despite these environmental differences, biomass values of these groups proved similar for both summers. A total of ten species of copepods and one of appendicularians (Fritillaria borealis) were identified. Oithonid copepods—O. similis, followed by O. frigida—represented the bulk of mesozooplankton abundances in both summers. The highest total mesozooplankton abundance (2111 ind m−3) and biomass (14075 µg C m−3) were found next to an Adélie penguin breeding area (2014), while the highest Shannon index values were found next to a glacier in both summers. Multivariate analyses based on species abundance showed two main groups of sites, one of them encompassing all summer 2014 samplings and the other comprising all summer 2015 samplings. The positive correlation between O. similis and the 2–10 μm Chl-a fraction suggests that summer 2014 represented optimal conditions—in terms of food—for the growth and development of this species. Experimental studies based on natural prey assemblages revealed that O. similis feeds on flagellates rather than on diatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre G (2015) Ecología del mesozooplancton marino en ambientes costeros de altas latitudes: Canal Beagle (extremo sur de Sudamérica) y Caleta Potter (Isla 25 de Mayo, Antártida). Dissertation, University of Buenos Aires

  • Atkinson A (1994) Diets and feeding selectivity among the epipelagic copepod community near South Georgia in summer. Polar Biol 14:551–560

    Article  Google Scholar 

  • Atkinson A (1998) Life cycle strategies of epipelagic copepods in the Southern Ocean. J Mar Syst 15:289–311

    Article  Google Scholar 

  • Atkinson A, Ward P, Murphy EJ (1996) Die1 periodicity of subantarctic copepods: relationships between vertical migration, gut fullness and gut evacuation rate. J Plankton Res 18:1387–1405

    Article  Google Scholar 

  • Atkinson A, Ward P, Hunt BPV et al (2012) An overview of Southern Ocean zooplankton data: abundance, biomass, feeding and functional relationships. CCAMLR Sci 19:171–218

    Google Scholar 

  • Balzarini MG, Gonzalez L, Tablada M et al (2008) Manual del Usuario. Editorial Brujas, Argentina

    Google Scholar 

  • Båmstedt U, Fyhn HJ, Martinussen MB et al (2005) Seasonal distribution, diversity and biochemical composition of appendicularians in Norwegian fjords. In: Gorsky G, Youngbluth M (eds) Response of marine ecosystem to global change: ecological impact of appendicularians. GB Scientific Publisher, pp 233–259

  • Barnes DKA (1995) Sublittoral epifaunal communities at Signy Island, Antarctica. I. The ice-foot zone. Mar Biol 121:555–563

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Böttger-Schnack R (1985) Untersuchungen zur Verteilung der kleinen Metazoa im Plankton des Roten Meeres, unter besonderer Beru¨cksichtigung cyclopoider und harpacticoider Copepoden. Dissertation, University of Hamburg

  • Bradford-Grieve JM, Markhaseva EL, Rocha CEF, Abiahy B (1999) Copepoda. In: Boltovskoy D (ed) South Atlantic Zooplankton. Backhuys Publishers, Leiden, pp 869–1098

    Google Scholar 

  • Bray RJ, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Calbet A, Alcaraz M, Atienza DE, Broglio E (2002) Vaqué D (2005) Zooplankton biomass and distribution patterns along the western Antarctic Peninsula. J Plankton Res 27:1195–1203

    Article  Google Scholar 

  • Casaux R, Carlini A, Corbalán A et al (2009) The diet of the Weddell seal Leptonychotes weddellii at Laurie Island, South Orkney Islands. Polar Biol 32:833–838

    Article  Google Scholar 

  • Chinnery FE, Williams JA (2004) The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar Biol 145:733–738

    Google Scholar 

  • Clarke A, Harris CM (2003) Polar marine ecosystems: major threats and future change. Environ Conserv 30:1–25

    Article  Google Scholar 

  • Clarke A, Leakey RJG (1996) The seasonal cycle of phytoplankton, macronutrients, and the microbial community in a nearshore antarctic marine ecosystem. Limnol Oceanogr 41:1281–1294

    Article  CAS  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Primer-E, Plymouth

    Google Scholar 

  • Coria NR, Montalti D, Rombola EF et al (2011) Birds at Laurie Island, South Orkney islands, Antarctica: breeding species and their distribution. Mar Oornithol 39:207–213

    Google Scholar 

  • Daponte MC, Capitanio FL, Esnal GB (2001) A mechanism for swarming in the tunicate Salpa thompsoni (Foxton, 1961). Antarct Sci 13:240–245

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG et al (2013). InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Doney SC, Ruckelshaus M, Duffy JE et al (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37

    Article  PubMed  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG et al (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Trans R Soc B 362:67–94

    Article  Google Scholar 

  • Dunn MJ, Jennifer A, Jackson JA et al (2016) Population size and decadal trends of three penguin species nesting at Signy Island. South Orkney Islands PLoS One. https://doi.org/10.1371/journal.pone.0164025

    PubMed  Google Scholar 

  • Dvoretsky VG, Dvoretsky AG (2009) Spatial variations in reproductive characteristics of the small copepod Oithona similis in the Barents Sea. Mar Ecol Prog Ser 386:133–146

    Article  Google Scholar 

  • Eisenman I, Meier WN, Norris JR (2014) A spurious jump in the satellite record: has Antarctic sea ice expansion been overestimated? Cryosphere 8:1289–1296

    Article  Google Scholar 

  • Elwers K, Dahms HU (1998) Species composition and seasonal population structure of Oithona similis (Copepoda, Cyclopoida) in the Potter Cove (Jubany, King George Island, Antarctica). Berichte zur Polar- und Meeresforschung 299:150–155

    Google Scholar 

  • Esnal GB (1999) Appendicularia. In: Boltovskoy D (ed) South Atlantic Zooplankton. Backhuys Publishers, Leiden, pp 1375–1399

    Google Scholar 

  • Feller RJ, Warwick RM (1988) Energetics. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, pp 181–196

    Google Scholar 

  • Francis TB, Scheuerell MD, Brodeur RD, Levin PS et al (2012) Climate shifts the interaction web of a marine plankton community. Glob Change Biol 18:2498–2508

    Article  Google Scholar 

  • Fransz HG (1988) Vernal abundance, structure and development of epipelagic copepod populations of the eastern Weddell Sea (Antarctica). Polar Biol 9:107–114

    Article  Google Scholar 

  • Garcia MD, Hoffmeyer MS, López Abbate MC, Barría de Cao MS et al (2015) Micro and mesozooplankton responses during two contrasting summers in coastal Antarctic environment. Polar Biol 39:123–137

    Article  Google Scholar 

  • Gee JM, Fleeger JW (1986) Two new species of harpacticoid copepod from the South Orkney Islands, Antarctica, and a redescription of Idyellopsis typica Lang (Tisbidae). Zool J Linn Soc Lond 88:143–165

    Article  Google Scholar 

  • Gleiber M (2014) Long-term change in copepod community structure in the Western Antarctic Peninsula: Linkage to climate and implications for carbon cycling. Dissertation, The Faculty of the School of Marine Science

  • Gleiber MR, Steinberg DK, Ducklow HW (2012) Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar Ecol Prog Ser 471:23–36

    Article  Google Scholar 

  • Gorsky G, Youngbluth MJ, Deibel D (2005) Response of marine ecosystems to global change: ecological impact of appendicularians. Editions Scientifiques, Paris

    Google Scholar 

  • Gradinger R, Friedrich C, Spindler M (1999) Abundance, biomass and composition of the sea ice biota of the Greenland Sea pack ice. Deep Sea Res Part II 46:1457–1472

    Article  Google Scholar 

  • Greve W, Reiners F, Nast J, Hoffmann S (2004) Hoffmann Helgoland Roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgol Mar Res 58:274–288

    Article  Google Scholar 

  • Hansen BW, Drillet G, Kozmer A, Madsen KV, Pedersen MF, Sørensen TF (2010) Temperature effects on copepod egg hatching: does acclimatization matter? J Plankton Res 32:305–315

    Article  Google Scholar 

  • Hawkings JR, Wadham JL, Tranter M, Raiswell R et al (2014) Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun. https://doi.org/10.1038/ncomms4929

    PubMed  PubMed Central  Google Scholar 

  • Hirst A, Bunker A (2003) Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol Oceanogr 48:1988–2010

    Article  Google Scholar 

  • Jarman SN, McInnes JC, Faux C et al (2013) Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE. https://doi.org/10.1371/journal.pone.0082227

    Google Scholar 

  • Jaspers C, Nielsen TG, Garstensen J, Hopcroft RR, Møller EF (2009) Metazooplankton distribution across the Southern Indian Ocean with emphasis on the role of Larvaceans. J Plankton Res 31:525–540

    Article  CAS  PubMed Central  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Kiørboe T, Hirst AG (2008) Optimal development time in pelagic copepods. Mar Ecol Prog Ser. https://doi.org/10.3354/meps07572

    Google Scholar 

  • Kiørboe T, Møhlenberg F, Nicolajsen H (1982) Grazing rate and gut clearance in the planktonic copepod Centropages hamatus (Lilljeborg) in relation to food concentration and temperature. Ophelia 21:181–194

    Article  Google Scholar 

  • Leakey RJG, Fenton N, Clarke A (1994) The annual cycle of planktonic ciliates in nearshore waters at Signy Island, Antarctica. J Plankton Res 16:841–856

    Article  Google Scholar 

  • Lewis Smith RI (1990) Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin, pp 32–50

    Chapter  Google Scholar 

  • Lindsay MC (2012) Distribution and abundance of Larvaceans in the Southern Ocean. Dissertation, University of Tasmania

  • Lischka S, Hagen W (2007) Seasonal lipid dynamics of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Mar Biol 150:443–454

    Article  Google Scholar 

  • Lombard F, Renaud F, Sainsbury C, Sciandra A, Gorsky G (2009) Appendicularian ecophysiology. I: food concentration dependent clearance rate, assimilation efficiency, growth and reproduction of Oikopleura dioica. J Mar Syst 78:606–616

    Article  Google Scholar 

  • McLeod DJ, Hosie GW, Kitchener JA, Takahashi KT et al (2010) Zooplankton atlas of the Southern Ocean: the SCAR SO-CPR survey (1991-2008). Polar Sci 4:353–385

    Article  Google Scholar 

  • Metz C (1996) Lebensstrategien dominanter antarktischer Oithonidae (Cyclopoida, Copepoda) und Oncaeidae (Poecilostomatoida, Copepoda) im Belllngshausenmeer. Dissertation, Ber Polarforsch 207:l–123

  • Metz C (1998) Feeding of Oncaea curvata (Poecilostomatoida, Copepoda). Mar Ecol Prog Ser 169:229–235

    Article  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW et al (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  PubMed  Google Scholar 

  • Murphy EJ, Watkins JL, Trathan PN et al (2007) Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos Trans R Soc B 362:113–148

    Article  CAS  Google Scholar 

  • Murphy EJ, Clarke A, Abram NJ, Turner J (2014) Variability of sea-ice in the northern Weddell Sea during the 20th century. J Geophys Res Oceans 119:4549–4572

    Article  Google Scholar 

  • Nielsen TG, Sabatini M (1996) Role of cyclopoid copepods Oithona spp in North Sea plankton communities. Mar Ecol Prog Ser 139:79–93

    Article  Google Scholar 

  • Nishibe Y, Kobari T, Ota T (2010) Feeding by the cyclopoid copepod Oithona similis on the microplankton assemblage in the Oyashio region during spring. Plankton Benthos Res 5:74–78

    Article  Google Scholar 

  • Nozais C, Gosselin M, Michel C, Gugliemo T (2001) Abundance, biomass, composition and grazing impact of sea-ice meiofauna in the North Water, northern Baffin Bay. Mar Ecol Prog Ser 217:235–250

    Article  Google Scholar 

  • Pane L, Feletti M, Francomacaro B, Mariottini GL (2004) Summer coastal zooplankton biomass and copepod community structure near the Italian Terra Nova Base (Terra Nova Bay, Ross Sea, Antarctica). J Plankton Res 26:1479–1488

    Article  CAS  Google Scholar 

  • Pasternak AF, Schnack-Schiel SB (2001) Seasonal feeding patterns of the dominant Antarctic copepods Calanus propinquus and Calanoides acutus in the Weddell Sea. Polar Biol 24:771–784

    Article  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley, New York

    Google Scholar 

  • Pond DW, Ward P (2011) Importance of diatoms for Oithona in Antarctic waters. J Plankton Res 33:105–118

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Presta ML, Hoffmeyer MS, Capitanio FL (2015) Population structure and maturity stages of Fritillaria borealis (Appendicularia, Tunicata): seasonal cycle in Ushuaia Bay (Beagle Channel). Braz J Oceanogr 63:279–288

    Article  Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295

    Article  Google Scholar 

  • Sahade R, Lagger C, Torre LF et al (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv. https://doi.org/10.1126/sciadv.1500050

    PubMed  PubMed Central  Google Scholar 

  • Sato R, Tanaka Y, Ishimaru T (2001) House production by Oikopleura dioica (Tunicata, Appendicularia) under laboratory conditions. J Plankton Res 23:415–423

    Article  Google Scholar 

  • Schnack-Schiel SB, Hagen W, Mizdalski E (1998) Seasonal carbon distribution of copepods in the eastern Weddell Sea, Antarctica. J Mar Syst 17:305–311

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. The University of Illinois Press, Urbana

    Google Scholar 

  • Shreeve RS, Ward P, Whitehouse MJ (2002) Copepod growth and development around South Georgia: relationships with temperature, food and krill. Mar Ecol Prog Ser 233:169–183

    Article  Google Scholar 

  • Sicinski J, Rozycki O, Kittel W (1996) Zoobenthos and zooplankton of Herve Cove, King George Island, South Shetland Islands, Antarctic. Pol Polar Res 17:221–238

    Google Scholar 

  • Simonsen R (1974) The diatom plankton of the Indian Ocean expedition of RV Meteor 1964–1965. Meteor-Forschungsergebnisse, Reihe, Berlin

    Google Scholar 

  • Sommaruga R (2015) When glaciers and ice sheets melt: consequences for planktonic organisms. J Plankton Res 3:509–518

    Article  Google Scholar 

  • Stanwell-Smith D, Hood A, Peck LS (1997) A field guide to the pelagic invertebrate larvae of the maritime Antarctic. British Antarctic Survey, Cambridge

    Google Scholar 

  • Steinberg DK, Ruck KE, Gleiber MR, Garzio LM et al (2015) Long-term (1993-2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-Sea Res Part I 101:54–70

    Article  Google Scholar 

  • Svensen C, Kiørboe T (2000) Remote prey detection in Oithona similis: hydromechanical vs chemical cues. J Plankton Res 22:1155–1166

    Article  Google Scholar 

  • Tsujimoto M, Takahashi KT, Hirawake T, Fukuchi M (2007) U–nusual abundance of appendicularians in the seasonal ice zone (140°E) of the Southern Ocean. Polar Biosci 19:133–141

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Vanderploeg HA, Scavia D (1979) Two electivity indices for feeding with special reference to zooplankton grazing. Can J Fish Aquat Sci 36:362–365

    Google Scholar 

  • Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Prog Ser 130:277–293

    Article  Google Scholar 

  • Wallis JR, Swadling KM, Everett JD, Suthers IM et al (2015) Zooplankton abundance and biomass size spectra in the East Antarctic sea-ice zone during the winter–spring transition. Deep Sea Res Part II 131:170–181

    Article  Google Scholar 

  • Walton DWH (1982) The Signy Island terrestrial reference sites. XV. Microclimate monitoring, 1972–74. Br Antarct Surv Bull 55:111–126

    Google Scholar 

  • Ward P, Hirst AG (2007) Oithona similis in a high latitude ecosystem: abundance distribution and temperature limitation of fecundity rates in a sac spawning copepod. Mar Biol 151:1099–1110

    Article  Google Scholar 

  • Ward P, Shreeve RS (1998) Egg hatching times of Antarctic copepods. Polar Biol 19:142–144

    Article  Google Scholar 

  • Ward P, Shreeve RS, Cripps GG (1996) Rhincalanus gigas and Calanus simillimus: lipid storage patterns of two species of copepod in the seasonally ice-free zone of the Southern Ocean. J Plankton Res 18:1439–1454

    Article  Google Scholar 

  • Ward P, Shreeve R, Whitehouse M, Korb B et al (2005) Phyto- and zooplankton community structure and production around South Georgia (Southern Ocean) during summer 2001/02. Deep Sea Res Part I 52:421–441

    Article  CAS  Google Scholar 

  • Ward P, Atkinson A, Tarling G (2012a) Mesozooplankton community structure and variabilityin the Scotia Sea: a seasonal comparison. Deep Sea Res Part II 60:78–92

    Article  Google Scholar 

  • Ward P, Atkinson A, Venables HJ, Tarling GA et al (2012b) Food webstructure and bioregions in the Scotia Sea: a seasonal synthesis. Deep-Sea Res PTII 60:253–266

    Article  Google Scholar 

  • Whitaker TM (1982) Primary production of phytoplankton off Signy Island, South Orkneys, the Antarctic. Proc R Soc Lond Ser B 214:169–189

    Article  Google Scholar 

  • Wyatt T (1973) The biology of Oikopleura dioica and Fritillaria borealis in the Southern Bight. Mar Biol 22:137–158

    Article  Google Scholar 

  • Zmijewska MI, Yen J (2003) Seasonal and diel changes in the abundance and vertical distribution of the Antarctic copepod Calanoides acutus, Calanus propinquus, Rhincalanus gigas, Metridia gerlachei and Euchaeta antarctica (Calanoida) in Croker Passage (Antarctic Peninsula). Oceanologia 35:101–127

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ et al (2009) Dealing with heterogeneity. In: Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (eds) Mixed effects models and extensions in ecology with R. Springer, New York, pp 71–100

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank M. Yaya, I. Hoermann, S. Gorini, and J. Zocatelli (Dirección Nacional del Antártico) for their assistance during sampling. Thanks are due also to the Instituto Antártico Argentino and Dirección Nacional del Antártico for providing logistic support, to the Orcadas Base personnel for their cooperation, and to the reviewers for helping to improve the manuscript. This study was supported by a fellowship granted to M.S. by CONICET, Argentina, and by funds assigned to V.A.’s project PICT-O 2010-0128 (FONCYT and Instituto Antártico Argentino).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariela L. Spinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spinelli, M.L., Franzosi, C., Olguin Salinas, H. et al. Appendicularians and copepods from Scotia Bay (Laurie island, South Orkney, Antarctica): fluctuations in community structure and diversity in two contrasting, consecutive summers. Polar Biol 41, 663–678 (2018). https://doi.org/10.1007/s00300-017-2227-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2227-8

Keywords

Navigation