Skip to main content

Advertisement

Log in

Comparison of community structures between particle-associated and free-living prokaryotes in tropical and subtropical Pacific Ocean surface waters

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The subtropical and tropical regions of the Pacific Ocean are less productive than other oceanic regions. Although particle association should be an important strategy for heterotrophic prokaryotes to survive in such environments, we have little information on particle-associated (PA) prokaryotes in these regions. The specific aim of this study was to determine bacterial and archaeal community structures in the PA assemblage in comparison to the free-living (FL) assemblage in the North Pacific Subtropical Gyre, the South Pacific Subtropical Gyre, and an eastern equatorial region of the Pacific Ocean. Community profiles and phylogenetic identities were obtained by denaturing gradient gel electrophoresis, 454-pyrosequencing, and cloning followed by Sanger sequencing of 16Sr RNA gene amplicons. The distribution patterns of some abundant groups in three regions and two lifestyles (PA and FL) are shown in this study. Also, the PA community structures of bacteria differed from the FL ones and exhibited higher diversity than the FL ones, while the archaeal community structures did not show significant differences between PA and FL assemblages. We found that specific phylotypes of Gammaproteobacteria and Flavobacteria were abundant in PA bacterial assemblages, suggesting that they prefer to attach and consume particulate organic matter. In summary, the surface seawater PA assemblages represent very different bacterial and archaeal community structures between three different oceanic regions, each of which had distinct PA and FL community structures. These results imply that environmental factors determine microbial community structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acinas SG, Rodríguez-Valera F, Pedrós-Alió C (1997) Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol Ecol 24:27–40

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  Google Scholar 

  • Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455

    Article  Google Scholar 

  • Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S, Sicheritz-Ponten T (2012) Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME J 6:11–20

    Article  Google Scholar 

  • Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific ocean. ISME J 3:1374–1386

    Article  Google Scholar 

  • Brown MV, Lauro FM, Demaere MZ, Muir L, Wilkins D, Thomas T, Riddle MJ, Fuhrman JA, Andrews-Pfannkoch C, Hoffman JM, McQuaid JB, Allen A, Rintoul SR, Cavicchioli R (2012) Global biogeography of SAR11 marine bacteria. Mol Syst Biol 8:595

    Article  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreas L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  Google Scholar 

  • Claustre H, Maritorena S (2003) The many shades of ocean blue. Science 302:3089–3121

    Article  Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  Google Scholar 

  • Crespo BG, Pommier T, Fernández-Gómez B, Pedrós-Alió C (2013) Taxonomic composition of the particle-attached and free-living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen 2(4):541–552

    Article  Google Scholar 

  • Cui Y, Suzuki S, Omori Y, Wong SK, Ijichi M, Kaneko R, Kameyama S, Tanimoto H, Hamasaki K (2015) Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical Pacific Ocean. Appl Environ Microbiol 81:4184–4194

    Article  Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brondie EL, Keller K, Huber T, Dalevi F, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Envrion Microbiol 72:5069–5072

    Article  Google Scholar 

  • Dyhrman ST, Chappell PD, Haley ST, Moffet JW, Orchard ED, Waterbury JB, Webb EA (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439:68–71

    Article  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  Google Scholar 

  • Eloe EA, Shulse CN, Fadrosh DW, Williamson SJ, Allen EE, Bartlett DH (2011) Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ Microbiol 3(4):449–458

    Article  Google Scholar 

  • Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF (2015) Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol 6:469

    Article  Google Scholar 

  • Francés R, Benlloch S, Zapater P, González JM, Lozano B, Muñoz C, Pascual S, Casellas JA, Uceda F, Palazón JM, Carnicer F, Pérez-Mateo M, Such J (2004) A sequential study of serum bacterial DNA in patients with advanced cirrhosis and ascites. Hepatology 39(2):484–491

    Article  Google Scholar 

  • Fuhrman JA, Ouverney CC (1998) Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquat Ecol 32:3–15

    Article  Google Scholar 

  • Galand PE, Lovejoy C, Pouliot J, Vincent WF (2008) Heterogeneous archaeal communities in the particle rich environment of an arctic shelf ecosystem. J Mar Syst 74:774–782

    Article  Google Scholar 

  • Ganesh S, Parris DJ, DeLong EF, Stewart FJ (2013) Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J 8:187–211

    Article  Google Scholar 

  • Giovannoni SJ, Vergin KL (2012) Seasonality in ocean microbial communities. Science 335:671–676

    Article  Google Scholar 

  • Grote J, Bayindirli C, Bergauer K, Carpintero de Moraes P, Chen H, D’Ambrosio L, Edwards B, Fernández-Gómez B, Hamisi M, Logares R, Nguyen D, Rii YM, Saeck E, Shutte C, Widner B, Church MJ, Steward GF, Karl DM, DeLong EF, Eppley JM, Schuster SC, Kyrpides NC, Rappé MS (2011) Draft genome sequence of strain HIMB100, a cultured representative of the SAR116 clade of marine Alphaproteobacteria. Stand Genomic Sci 5:269–278

    Article  Google Scholar 

  • Hashihama F, Furuya K, Kitajima S, Takeda S, Takemura T, Kanda J (2009) Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western North Pacific. Geophys Res Lett 36:L03610

    Article  Google Scholar 

  • Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5(10):1571–1579

    Article  Google Scholar 

  • Højberg O, Canibe N, Poulsen HD, Hedemann MS, Jensen BB (2005) Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl Environ Microbiol 71:2267–2277

    Article  Google Scholar 

  • Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine euryarchaeota. Science 335:587–590

    Article  Google Scholar 

  • Karl DM (2002) Nutrient dynamics in the deep blue sea. Trends Microbiol 10:410–418

    Article  Google Scholar 

  • Lami R, Cottrell MT, Ras J, Ulloa O, Obernosterer I, Claustre H, Lebaron P (2007) High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean. Appl Environ Microbiol 73:4198–4205

    Article  Google Scholar 

  • LaMontagne MG, Holden PA (2003) Comparison of free-living and particle-associated bacterial communities in a coastal lagoon. Microb Ecol 46:228–237

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematics. Wiley, Chichester, pp 115–147

    Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  Google Scholar 

  • Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic archaea in the Santa Barbara Channel. Appl Environ Microbiol 63:50–56

    Google Scholar 

  • Miller BC, Wheeler PA (2012) Biological oceanography. 2nd edn. Wiley-Blackwell, Chichester, West Sussex, p 464

  • Moesender M, Winter C, Herndl GJ (2001) Horizontal and vertical complexity of attached and free-living bacteria in the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints. Limnol Oceanogr 46:95–107

    Article  Google Scholar 

  • Morel A, Huot Y, Gentili B, Werdell PJ, Hooker SB, Franz BA (2007) Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens Environ 111:69–88

    Article  Google Scholar 

  • Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  Google Scholar 

  • Moutin T, Karl DM, Duhamel S, Rimmelin P, Raimbault P, Mooy BASV, Claustre H (2008) Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences 5:95–109

    Article  Google Scholar 

  • Murray JW, Johnson E, Garside C (1995) A US JGOFS process study in the Equatorial Pacific (EqPac): Introduction. Deep-sea Res Part II 42:275–293

  • Obernosterer I, Catala P, Lami R, Caparros J, Ras J, Bricaud A, Dupuy C, Van Wambeke F, Lebaron P (2008) Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean. Biogeosciences 5:693–705

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-7. http://www.cran.r-project.org

  • Orsi WD, Smith JM, Wilcox HM, Swalwell JE, Carini P, Worden AZ, Santro AE (2015) Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J 9:1747–1763

  • Ortega-Retuerta E, Joux F, Jeffrey WH, Ghiglione JF (2013) Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10:2747–2759

    Article  Google Scholar 

  • Partensky P, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and Environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. ISBN 3-900051-07-0

  • Rösel S, Allgaier M, Grossart HP (2012) Long-Term characterization of free-living and particle-associated bacterial communities in lake Tiefwaren reveals distinct seasonal patterns. Microb Ecol 64:571–583

    Article  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, HoVman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical PaciWc. PLoS Biol 5:e77

    Article  Google Scholar 

  • Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC (2010) Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci USA 107:16184–16189

    Article  Google Scholar 

  • Schäfer H, Muyzer G (2001) Denaturing gradient gel electrophoresis in marine microbial ecology. In: Paul J (ed) Methods in microbiology, marine microbiology. Academic, London, pp 425–468

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Simon M, Billerbeck S, Kessler D, Selje N, Schlingloff A (2012) Bacterioplankton communities in the Southern Ocean: composition and growth response to various substrate regimes. Aquat Microb Ecol 68:13–28

    Article  Google Scholar 

  • Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N,N-dimethylformamide. J Oceanogr Soc Jpn 46:190–194

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  Google Scholar 

  • Van Wambeke F, Bonnet S, Moutin T, Raimbault P, Alarcon G, Guieu C (2008) Factors limiting heterotrophic bacterial production in the southern Pacific Ocean. Biogeosciences 5:833–845

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S-Plus, 4th edn. Springer, New York

    Book  Google Scholar 

  • Walsh EA, Smith DC, Sogin ML, D’Hondt SL (2015) Bacterial and archaeal biogeography of the deep chlorophyll maximum in the South Pacific Gyre. Aquat Microb Ecol 75:1–13

    Article  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992

    Article  Google Scholar 

  • Wilhartitz I, Mach RL, Teira E, Reinthaler T, Herndl GJ, Farnleitner AH (2007) Prokaryotic community analysis with CARD-FISH in comparison with FISH in ultra-oligotrophic ground- and drinking water. J Appl Microbiol 103:871–881

    Article  Google Scholar 

  • Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161

    Google Scholar 

Download references

Acknowledgements

We thank the captain and crew of the R/V “Hakuho-maru” for assistance with sample collection. We also thank the Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, for the 454-pyrosequencing. This research was supported by JSPS KAKENHI Grant Numbers 24121004 and 24121003, as part of the NEOPS (New Ocean Paradigm on Its Biogeochemistry, Ecosystem and Sustainable Use) project in Grants-in-Aid for Scientific Research on Innovative Areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Hamasaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2907 kb)

Supplementary material 2 (XLSX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, S., Kaneko, R., Kodama, T. et al. Comparison of community structures between particle-associated and free-living prokaryotes in tropical and subtropical Pacific Ocean surface waters. J Oceanogr 73, 383–395 (2017). https://doi.org/10.1007/s10872-016-0410-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-016-0410-0

Keywords

Navigation