Skip to main content

Advertisement

Log in

Detection of ammonia-oxidizing Bacteria and Archaea within coral reef cyanobacterial mats

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Coral-reef filamentous cyanobacterial mats are complex communities of microbes. We used DGGE and eubacterial and archaeal 16S rRNA and amoA ammonium monooxygenase subunit A primer sets to explore the presence of genes mediating nitrogen conversion within cyanobacterial mats from Hawaii. DGGE band analysis revealed the presence of halophiles such as Halococcus salifodinae and of Nitrosopumilus-like organisms. Twenty seven out of 31 clone sequences exhibited a 95 % or greater 16S rRNA gene identity with known archaeal ammonia oxidizers such as Nitrosopumilus maritimus. The presence of Archaea within those mats, as well as the co-occurrence of both ammonia-oxidizing Archaea and ammonia-oxidizing Bacteria suggests importance of the former in the cyanobacterial mat community, and suggests greater than anticipated diversity of nitrogen conversion processes and organisms in those systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abell GC, Revill AT, Smith C, Bissett AP, Volkman JK, Robert SS (2009) Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME J 4:286–300

    Article  Google Scholar 

  • Adachi K (1999) Isolation of hydrogenotrophic methanogenic archaea from a subtropical paddy field. FEMS Microbiol Ecol 30:77–85

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification of cyanophytes. 3. Oscillatoriales. Arch Hydrobiol Algol Stud 50–53:327–472

    Google Scholar 

  • Arthur K, Shaw G, Limpus C, Udy J (2006) A review of the potential role of tumour-promoting compounds produced by Lyngbya majuscula in marine turtle fibropapillomatosis. Afr J Mar Sci 28:441–446

    Article  Google Scholar 

  • Arthur K, Limpus C, Balazs G, Capper A, Udy J, Shaw G, Keuper-Bennett U, Bennett P (2008) The exposure of green turtles (Chelonia mydas) to tumour promoting compounds produced by the cyanobacterium Lyngbya majuscula and their potential role in the aetiology of fibropapillomatosis. Harmful Algae 7:114–125

    Article  Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  Google Scholar 

  • Bathen KH (1968) A descriptive study of the physical oceanography of Kaneohe Bay, Oahu, Hawaii. Honolulu (HI). Hawaii Institute of Marine Biology, University of Hawaii, Report No. 14, p 353

  • Bayer K, Schmitt S, Hentschel U (2008) Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ Microbiol 10:2942–2955

    Article  Google Scholar 

  • Beman JM, Roberts KJ, Wegley L, Rohwer F, Francis CA (2007) Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals. Appl Environ Microbiol 73:5642–5647

    Article  Google Scholar 

  • Besemer K, Singer G, Limberger R, Chlup A-K, Hochedlinger G, Hödl I, Baranyi C, Battin C (2007) Biophysical controls on community succession in stream biofilms. Appl Environ Microbiol 73:4966–4974

    Article  Google Scholar 

  • Bouskill NJ, Eveillard D, Chien D, Jayakumar A, Ward BB (2012) Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environ Microbiol 14:714–729

    Article  Google Scholar 

  • Chan BKK, Chan WKS, Walker G (2003) Patterns of biofilm succession on a sheltered rocky shore in Hong Kong. Biofouling 19:371–380

    Article  Google Scholar 

  • Charpy L, Casareto BE, Langlade MJ, Suzuki Y (2012) Cyanobacteria in coral reef ecosystems: a review. J Mar Biol Article ID 259571

  • Chen F, Wang M, Zheng Y, Li S, Wang H, Han D, Guo S (2013) The effect of biocontrol bacteria on rhizosphere bacterial communities analyzed by plating and PCR-DGGE. Curr Microbiol Online First. doi:10.1007/s00284-013-0347-0

    Google Scholar 

  • Church MJ, Wai B, Karl DM, DeLong EF (2010) Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean. Environ Microbiol 12:679–688

    Article  Google Scholar 

  • Cruz-Rivera E, Paul VJ (2002) Coral reef benthic cyanobacteria as food and refuge: diversity, chemistry and complex interactions. In: Proc 9th Int Coral Reef Symp 1:515–520

  • Cruz-Rivera E, Paul VJ (2006) Feeding by coral reef mesograzers: algae or cyanobacteria? Coral Reefs 25:617–627

    Article  Google Scholar 

  • Dang H, Li J, Chen R, Wang L, Guo L, Wang L, Guo L, Zhang Z, Klotz MG (2010) Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microbiol 76:691–702

    Google Scholar 

  • DeLong E (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  Google Scholar 

  • DeLong E (1998) Everything in moderation: Archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8:649–654

    Article  Google Scholar 

  • Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    Article  Google Scholar 

  • Dowd S, Sun Y, Secor P, Rhoads D, Wolcott B, James G, Wolcott R (2008) Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8:43

    Article  Google Scholar 

  • Engene N, Choi H, Esquenazi E, Rottacker EC, Ellisman MH, Dorrestein PC, Gerwick WH (2011) Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ Microbiol 13:1601–1610

    Article  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing Archaea. FEMS Microbiol Rev 33:855–869

    Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci 102:14683–14688

    Article  Google Scholar 

  • Francis CA, Beman JM, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19–27

    Article  Google Scholar 

  • Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of bacterial communities between seawater and healthy, Black Band diseased, and dead coral surfaces. Appl Environ Microbiol 68:2214–2228

    Article  Google Scholar 

  • Frias-Lopez J, Bonheyo GT, Jin Q, Fouke BW (2003) Cyanobacteria associated with coral Black Band Disease in Caribbean and Indo-Pacific reefs. Appl Environ Microbiol 69:2409–2413

    Article  Google Scholar 

  • Fuhrman JA, Davis AA (1997) Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285

    Article  Google Scholar 

  • Gilbertson WW, Solan M, Prosser JI (2012) Differential effects of microorganism–invertebrate interactions on benthic nitrogen cycling. FEMS Microbiol Ecol 82:11–22

    Article  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  Google Scholar 

  • Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574

    Article  Google Scholar 

  • Hmelo LR, Van Mooy BAS, Mincer TJ (2012) Characterization of bacterial epibionts on the cyanobacterium Trichodesmium. Aquat Microb Ecol 67:1–14

    Article  Google Scholar 

  • Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Direct comparison of single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) to characterize a microbial community on the basis of 16S rRNA gene fragments. J Microbiol Methods 66:165–169

    Article  Google Scholar 

  • Jackson CR, Roden E, Churchill PF (1998) Changes in bacterial species composition in enrichment cultures with various dilutions of inoculum as monitored by denaturing gradient gel electrophoresis. Appl Environ Microbiol 64:5046–5048

    Google Scholar 

  • Jokiel PL, Hunter CL, Taguchi S, Watarai L (1993) Ecological impact of a fresh-water “reef kill” in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12:177–184

    Article  Google Scholar 

  • Jousset A, Lara E, Nikolausz M, Harms H, Chatzinotas A (2010) Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil. Sci Total Environ 408:1221–1225

    Article  Google Scholar 

  • Jung MY, Park SJ, Min D, Kim JS, Rijpstra WI, Damsté JSS, Kim J-G, Madsen EL, Rhee S-K (2011) Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl Environ Microbiol 77:8635–8647

    Article  Google Scholar 

  • Jurgens G, Glockner F-O, Amann R, Saano A, Montonen L, Likolammi M, Münster U (2000) Identification of novel Archaea in bactioplankton of boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56

    Google Scholar 

  • Kellogg CA (2004) Tropical Archaea: diversity associated with the surface microlayer of corals. Mar Ecol Prog Ser 273:81–88

    Article  Google Scholar 

  • Kindaichi T, Awata T, Suzuki Y, Tanabe K, Hatamoto M, Ozaki N, Ohashi A (2011) Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment. Microbes Environ 26:67–73

    Article  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  • Kormas KA, Tamaki H, Hanada S, Kamagata Y (2009) Apparent richness and community composition of Bacteria and Archaea in geothermal springs. Aquat Microb Ecol 57:113–122

    Article  Google Scholar 

  • Kuffner IB, Paul VJ (2001) Effects of nitrate, phosphate and iron on the growth of macroalgae and benthic cyanobacteria from Cocos Lagoon, Guam. Mar Ecol Prog Ser 222:63–72

    Article  Google Scholar 

  • Li M, Cao H, Hong Y, Gu J-D (2011) Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol Biotechnol 89:1243–1254

    Article  Google Scholar 

  • Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C (2011) Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour Technol 102:3694–3701

    Article  Google Scholar 

  • Lyautey E, Lacoste B, Ten-Hage L, Rols JL, Garabetian F (2005) Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretation. Water Res 39:380–388

    Article  Google Scholar 

  • Manzano M, Iacumin L, Giusto C, Cecchini F, Patthey C et al (2012) Utilization of denaturing gradient gel electrophoresis (DGGE) to evaluate the intestinal microbiota of brown trout Salmo trutta fario. J Vet Sci Med Diagn 1:2. doi:10.4172/2325-9590.1000105

    Article  Google Scholar 

  • March TL, Saxman P, Cole J, Tiedje J (2000) Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol 66:3616–3620

    Article  Google Scholar 

  • Martens-Habbena W, Berube PB, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    Article  Google Scholar 

  • Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K, Tokuyama T (2011) Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone. Microbes Environ 26:23–29

    Article  Google Scholar 

  • Mertoglu B, Calli B, Girgin E, Inanc B, Ozturk I (2005) Comparative analysis of nitrifying bacteria in full-scale oxidation ditch and aerated nitrification biofilter by using fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE). J Environ Sci Health A Tox Hazard Subst Environ Eng 40:937–948

    Article  Google Scholar 

  • Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48

    Article  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Google Scholar 

  • Nelson KA, Moin NS, Bernhard AE (2009) Archaeal diversity and the prevalence of Crenarchaeota in salt marsh sediments. Appl Environ Microbiol 75:4211–4215

    Article  Google Scholar 

  • Osborne NJT, Webb PM, Shaw GR (2001) The toxins of Lyngbya majuscula and their human and ecological health effects. Environ Int 27:381–392

    Article  Google Scholar 

  • Paul VJ, Thacker RW, Banks K, Golubic S (2005) Benthic cyanobacterial bloom impacts the reefs of South Florida (Broward County, USA). Coral Reefs 24:693–697

    Article  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    Article  Google Scholar 

  • Rivkina E, Shcherbakova V, Laurinavichius K, Petrovskaya L, Krivushin K et al (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61:1–15

    Article  Google Scholar 

  • Rotthauwe J-H, Witzel K-P, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    Google Scholar 

  • Sambrook J, MacCallum P, Russell D (2006) The condensed protocols from molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, p 800

  • Sharp K, Arthur KE, Gu L, Ross C, Harrison G, Gunasekera SP, Meickle T, Matthew S, Luesch H, Thacker RW, Sherman DH, Paul VJ (2009) Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl Environ Microbiol 75:2879–2888

    Article  Google Scholar 

  • Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2008) Coral-associated ammonium oxidizing Crenarchaeota and their role in the coral holobiont nitrogen cycle. In: Proc. 11th Int Coral Reef Symp Session 8:252–256

  • Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2012) Geographic specific coral-associated ammonia-oxidizing Archaea in the Northern Gulf of Eilat (Red Sea). Microb Ecol 64:18–24

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco 573 pp

    Google Scholar 

  • Steger D, Ettinger-Epstein Whalan S, Hentschel U, De Nys R, Wagner M, Taylor MW (2008) Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol 10:1087–1094

    Article  Google Scholar 

  • Sweet MJ, Croquer A, Bythell JC (2010) Temporal and spatial patterns in waterborne bacterial communities of an island reef system. Aquat Microb Ecol 61:1–11

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  Google Scholar 

  • Thacker RW, Paul VJ (2004) Morphological, chemical, and genetic diversity of tropical marine cyanobacteria Lyngbya spp. and Symploca spp. (Oscillatoriales). Appl Environ Microbiol 70:3305–3312

    Article  Google Scholar 

  • Whitehead TR, Cotta MR (1999) Phylogenetic diversity of methanogenic archaea in swine waste storage pits. FEMS Microbiol Lett 179:223–226

    Article  Google Scholar 

  • Wiled C, Woyt H, Huettei M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98

    Article  Google Scholar 

  • Williams GA, Davies MS, Nagarkar S (2000) Primary succession on a seasonal tropical rocky shore: the relative roles of spatial heterogeneity and herbivory. Mar Ecol Prog Ser 203:81–94

    Article  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, Van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damsté JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grant #0314353 from the National Science Foundation to the Quality Education for Minorities (QEM) Network under which E. Cruz-Rivera served as a QEM Fellow. Cruz-Rivera would like to thank M. Rappé, D. Karl, H. Trapido-Rosenthal, T. Hemscheidt, and P. Bienfang for the use of facilities and equipment at HIMB and the University of Hawaii at Manoa, during the collection of field samples. He also acknowledges the invaluable help of B. Bruno in coordinating travel and other logistical arrangements. Sobolev was supported by the Junior Faculty Summer Research Grant from the University of Houston-Victoria Office of the Provost. Sobolev also would like to thank Ashley Chang who conducted a pilot study of Archaea in our samples. The data processing and manuscript preparation was conducted in Free Open Source Software; authors are indebted to Open Office, GIMP and the Ubuntu development community. Paige Ruschhaupt, T. Hibiya and three anonymous reviewers provided important editorial comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Sobolev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolev, D., Boyett, M.R. & Cruz-Rivera, E. Detection of ammonia-oxidizing Bacteria and Archaea within coral reef cyanobacterial mats. J Oceanogr 69, 591–600 (2013). https://doi.org/10.1007/s10872-013-0195-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-013-0195-3

Keywords

Navigation