Skip to main content

Advertisement

Log in

Modeling the long-term variability of phytoplankton functional groups and primary productivity in the South China Sea

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Primary productivity (PP) and phytoplankton structure play an important role in regulating oceanic carbon cycle. The unique seasonal circulation and upwelling pattern of the South China Sea (SCS) provide an ideal natural laboratory to study the response of nutrients and phytoplankton dynamics to climate variation. In this study, we used a three-dimensional (3D) physical–biogeochemical coupled model to simulate nutrients, phytoplankton biomass, PP, and functional groups in the SCS from 1958 to 2009. The modeled results showed that the annual mean carbon composition of small phytoplankton, diatoms, and coccolithophores was 33.7, 52.7, and 13.6 %, respectively. Diatoms showed a higher seasonal variability than small phytoplankton and coccolithophores. Diatoms were abundant during winter in most areas of the SCS except for the offshore of southeastern Vietnam, where diatom blooms occurred in both summer and winter. Higher values of small phytoplankton and coccolithophores occurred mostly in summer. Our modeled results indicated that the seasonal variability of PP was driven by the East Asian Monsoon. The northeast winter monsoon results in more nutrients in the offshore area of the northwestern Luzon Island and the Sunda Shelf, while the southwest summer monsoon drives coastal upwelling to bring sufficient nutrients to the offshore area of southeastern Vietnam. The modeled PP was correlated with El Niño/Southern Oscillation (ENSO) at the interannual scale. The positive phase of ENSO (El Niño conditions) corresponded to lower PP and the negative phase of ENSO (La Niña conditions) corresponded to higher PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Behrenfeld MJ, Boss E, Siegel DA, Shea DM (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Glob Biogeochem Cycles 19:GB1006. doi:10.1029/2004GB002299

    Article  Google Scholar 

  • Cai WJ, Dai M, Wang Y, Zhai W, Huang T, Chen S, Zhang F, Chen Z, Wang Z (2004) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Cont Shelf Res 24(12):1301–1319. doi:10.1016/j.csr.2004.04.005

    Article  Google Scholar 

  • Cermeño P, Dutkiewicz S, Harris RP, Follows M, Schofield O, Falkowski PG (2008) The role of nutricline depth in regulating the ocean carbon cycle. Proc Natl Acad Sci USA 105(51):20344–20349. doi:10.1073/pnas.0811302106

    Article  Google Scholar 

  • Chai F, Dugdale RC, Peng TH, Wilkerson FP, Barber RT (2002) One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle. Deep Sea Res Pt II 49(12–13):2713–2745. doi:10.1016/s0967-0645(02)00055-3

    Article  Google Scholar 

  • Chai F, Liu G, Xue H, Shi L, Chao Y, Tseng CM, Chou WC, Liu KK (2009) Seasonal and interannual variability of carbon cycle in South China Sea: A three-dimensional physical-biogeochemical modeling study. J Oceanogr 65(5):703–720. doi:10.1007/s10872-009-0061-5

    Article  Google Scholar 

  • Chao SY, Shaw PT, Wu SY (1996) Deep water ventilation in the South China Sea. Deep Sea Res Pt I 43(4):445–466. doi:10.1016/0967-0637(96)00025-8

    Article  Google Scholar 

  • Chen J (2005) Biogeochemistry of settling particles in the South China Sea and its significance on paleo-environment studies. Dissertation, Tongji University, Shanghai

  • Chen CT, Wang SL, Wang BJ, Pai SC (2001) Nutrient budgets for the South China Sea basin. Mar Chem 75(4):281–300. doi:10.1016/s0304-4203(01)00041-x

    Article  Google Scholar 

  • Chen R, Wiesner MG, Zheng YL, Cheng XR, Jin HY, Zhao QY, Zheng LF (2007a) Seasonal and annual variations of marine sinking particulate flux during 1993–1996 in the central South China Sea. Acta Oceanolog Sin 26(3):33–43

    Google Scholar 

  • Chen YLL, Chen HY, Chung CW (2007b) Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep Sea Res Pt II 54(14–15):1617–1633. doi:10.1016/j.dsr2.2007.05.005

    Article  Google Scholar 

  • Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification, and significance. Limnol Oceanogr 12(4):685–695

    Article  Google Scholar 

  • Dugdale RC, Barber RT, Chai F, Peng TH, Wilkerson FP (2002) One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part II: sensitivity analysis and comparison with JGOFS EqPac data. Deep Sea Res Pt II 49(13–14):2747–2768. doi:10.1016/s0967-0645(02)00056-5

    Article  Google Scholar 

  • DuRand MD, Olson RJ, Chisholm SW (2001) Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res Pt II 48(8–9):1983–2003. doi:10.1016/s0967-0645(00)00166-1

    Article  Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282(5740):677–680. doi:10.1038/282677a0

    Article  Google Scholar 

  • Eppley RW, Chavez FP, Barber RT (1992) Standing stocks of particulate carbon and nitrogen in the equatorial Pacific at 150°W. J Geophys Res 97(C1):655–661. doi:10.1029/91JC01386

    Article  Google Scholar 

  • Fujii M, Chai F (2007) Modeling carbon and silicon cycling in the equatorial Pacific. Deep Sea Res Pt II 54(5–7):496–520. doi:10.1016/j.dsr2.2006.12.005

    Article  Google Scholar 

  • Fujii M, Boss E, Chai F (2007) The value of adding optics to ecosystem models: a case study. Biogeosciences 4(5):817–835. doi:10.5194/bg-4-817-2007

    Article  Google Scholar 

  • Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Zweng MM, Baranova OK, Johnson DR (2010) Nutrients (phosphate, nitrate, silicate). In: Levitus S (ed) World Ocean Atlas 2009. NOAA Atlas NESDIS 71. US Government Printing Office, Washington, D.C.

    Google Scholar 

  • Han A, Dai M, Kao S-J, Gan J, Li Q, Wang L, Zhai W, Wang L (2012) Nutrient dynamics and biological consumption in a large continental shelf system under the influence of both a river plume and coastal upwelling. Limnol Oceanogr 57(2):486–502. doi:10.4319/lo.2012.57.2.0486

    Article  Google Scholar 

  • Hense I, Beckmann A (2008) Revisiting subsurface chlorophyll and phytoplankton distributions. Deep Sea Res Pt I 55(9):1193–1199. doi:10.1016/j.dsr.2008.04.009

    Article  Google Scholar 

  • Iglesias-Rodríguez MD, Brown CW, Doney SC, Kleypas J, Kolber D, Kolber Z, Hayes PK, Falkowski PG (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Glob Biogeochem Cycles 16(4):1100. doi:10.1029/2001GB001454

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kuo NJ, Zheng Q, Ho CR (2000) Satellite observation of upwelling along the western coast of the South China Sea. Remote Sens Environ 74(3):463–470. doi:10.1016/s0034-4257(00)00138-3

    Article  Google Scholar 

  • Lahajnar N, Wiesner MG, Gaye B (2007) Fluxes of amino acids and hexosamines to the deep South China Sea. Deep Sea Res Pt I 54(12):2120–2144. doi:10.1016/j.dsr.2007.08.009

    Article  Google Scholar 

  • Lan J, Wang Y, Bao Y (2012) Response of the South China Sea upper layer circulation to monsoon anomalies during 1997/1998 El Nino event. Aquat Ecosyst Health Manag 15(1):6–13. doi:10.1080/14634988.2012.645750

    Article  Google Scholar 

  • Li JX, Zhang R, Jin BG (2011) Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Sci 7(5):661–669. doi:10.5194/os-7-661-2011

    Article  Google Scholar 

  • Litchman E, Klausmeier CA, Schofield OM, Falkowski PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10(12):1170–1181. doi:10.1111/j.1461-0248.2007.01117.x

    Article  Google Scholar 

  • Liu G, Chai F (2009) Seasonal and interannual variability of primary and export production in the South China Sea: a three-dimensional physical–biogeochemical model study. ICES J Mar Sci 66(2):420–431. doi:10.1093/icesjms/fsn219

    Article  Google Scholar 

  • Liu KK, Chao SY, Shaw PT, Gong GC, Chen CC, Tang TY (2002) Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Res Pt I 49(8):1387–1412. doi:10.1016/s0967-0637(02)00035-3

    Article  Google Scholar 

  • Liu QY, Jiang X, Xie SP, Liu WT (2004) A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: seasonal development and interannual variability. J Geophys Res 109:C07012. doi:10.1029/2003JC002179

    Article  Google Scholar 

  • Liu H, Chang J, Tseng CM, Wen LS, Liu KK (2007a) Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station. Deep Sea Res Pt II 54(14–15):1602–1616. doi:10.1016/j.dsr2.2007.05.004

    Article  Google Scholar 

  • Liu KK, Chen YJ, Tseng CM, Lin II, Liu HB, Snidvongs A (2007b) The significance of phytoplankton photo-adaptation and benthic–pelagic coupling to primary production in the South China Sea: observations and numerical investigations. Deep Sea Res Pt II 54(14–15):1546–1574. doi:10.1016/j.dsr2.2007.05.009

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006), World Ocean Atlas 2005, vol 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 61. US Government Printing Office, Washington, D.C.

  • Maranon E, Holligan PM, Barciela R, Gonzalez N, Mourino B, Pazo MJ, Varela M (2001) Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar Ecol Prog Ser 216:43–56. doi:10.3354/meps216043

    Article  Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1(4):493–509

    Google Scholar 

  • Metzger EJ, Hurlburt HE (1996) Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J Geophys Res 101(C5):12331–12352. doi:10.1029/95JC03861

    Article  Google Scholar 

  • Ning X, Chai F, Xue H, Cai Y, Liu C, Shi J (2004) Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J Geophys Res 109:C10005. doi:10.1029/2004JC002365

    Article  Google Scholar 

  • Ning X, Lin C, Hao Q, Liu C, Le F, Shi J (2009) Long term changes in the ecosystem in the northern South China Sea during 1976–2004. Biogeosciences 6(10):2227–2243. doi:10.5194/bg-6-2227-2009

    Article  Google Scholar 

  • Palacz AP, Xue HJ, Armbrecht C, Zhang CY, Chai F (2011) Seasonal and inter-annual changes in the surface chlorophyll of the South China Sea. J Geophys Res 116:C09015. doi:10.1029/2011JC007064

    Article  Google Scholar 

  • Perez V, Fernandez E, Maranon E, Moran XAG, Zubkovc MV (2006) Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res Pt I 53(10):1616–1634. doi:10.1016/j.dsr.2006.07.008

    Article  Google Scholar 

  • Qu T, Song YT, Yamagata T (2009) An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate. Dyn Atmos Oceans 47(1–3):3–14. doi:10.1016/j.dynatmoce.2008.05.001

    Article  Google Scholar 

  • Radenac MH, Rodier M (1996) Nitrate and chlorophyll distributions in relation to thermohaline and current structures in the western tropical Pacific during 1985–1989. Deep Sea Res Pt II 43(4–6):725–752. doi:10.1016/0967-0645(96)00025-2

    Article  Google Scholar 

  • Ran L, Zheng Y, Chen J, Chen R, Zheng L, Wiesner M (2011) The influence of monsoon on seasonal changes of diatom fluxes in the northern and central South China Sea. Acta Oceanolog Sin 33:139–145 (in Chinese with English abstract)

    Google Scholar 

  • Shang S, Lee Z, Wei G (2011) Characterization of MODIS-derived euphotic zone depth: results for the China Sea. Remote Sens Environ 115(1):180–186. doi:10.1016/j.rse.2010.08.016

    Article  Google Scholar 

  • Shaw PT, Chao SY, Liu KK, Pai SC, Liu CT (1996) Winter upwelling off Luzon in the northeastern South China Sea. J Geophys Res 101(C7):16435–16448. doi:10.1029/96jc01064

    Article  Google Scholar 

  • Su J (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res 24(16):1745–1760. doi:10.1016/j.csr.2004.06.005

    Article  Google Scholar 

  • Tseng CM, Wong GTF, Lin II, Wu CR, Liu KK (2005) A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophys Res Lett 32:L08608. doi:10.1029/2004GL022111

    Article  Google Scholar 

  • Wan S, Jian ZM, Cheng XR, Qiao PJ, Wang RJ (2010) Seasonal variations in planktonic foraminiferal flux and the chemical properties of their shells in the southern South China Sea. Sci China Earth Sci 53(8):1176–1187

    Article  Google Scholar 

  • Wang X, Chao Y (2004) Simulated sea surface salinity variability in the tropical Pacific. Geophys Res Lett 31:L02302. doi:10.1029/2003GL018146

    Article  Google Scholar 

  • Wang P, Li Q (2009) The South China Sea: paleoceanography and sedimentology. Springer, New York, p 506

    Book  Google Scholar 

  • Wang R, Lin J, Zheng L, Chen R, Chen J (2000) Siliceous microplankton fluxes and seasonal variations in the central South China Sea during 1993–1995: monsoon climate and El Niño responses. Chin Sci Bull 45(23):2168–2172. doi:10.1007/bf02886323

    Article  Google Scholar 

  • Wang J, Tang D, Sui Y (2010) Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait. J Mar Syst 83(3–4):141–149. doi:10.1016/j.jmarsys.2010.05.006

    Article  Google Scholar 

  • Wang G, Xie SP, Qu T, Huang RX (2011) Deep South China Sea circulation. Geophys Res Lett 38:L05601. doi:10.1029/2010GL046626

    Google Scholar 

  • Wei CL, Lin SY, Sheu DD, Chou WC, Yi MC, Santschi PH, Wen LS (2011) Particle-reactive radionuclides (234Th, 210Pb, 210Po) as tracers for the estimation of export production in the South China Sea. Biogeosciences 8(12):3793–3808. doi:10.5194/bg-8-3793-2011

    Article  Google Scholar 

  • Wong GTF, Ku TL, Mulholland M, Tseng CM, Wang DP (2007a) The South-East Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea—an overview. Deep Sea Res Pt II 54(14–15):1434–1447. doi:10.1016/j.dsr2.2007.05.012

    Article  Google Scholar 

  • Wong GTF, Tseng CM, Wen LS, Chung SW (2007b) Nutrient dynamics and N-anomaly at the SEATS station. Deep Sea Res Pt II 54(14–15):1528–1545. doi:10.1016/j.dsr2.2007.05.011

    Article  Google Scholar 

  • Xie SP, Xie Q, Wang D, Liu WT (2003) Summer upwelling in the South China Sea and its role in regional climate variations. J Geophys Res 108(C8):3261. doi:10.1029/2003JC001867

    Article  Google Scholar 

  • Xie SP, Hu KM, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Climate 22(3):730–747. doi:10.1175/2008JCLI2544.1

    Article  Google Scholar 

  • Xiu P, Chai F (2011) Modeled biogeochemical responses to mesoscale eddies in the South China Sea. J Geophys Res 116:C10006. doi:10.1029/2010JC006800

    Article  Google Scholar 

  • Xiu P, Chai F (2012) Spatial and temporal variability in phytoplankton carbon, chlorophyll, and nitrogen in the North Pacific. J Geophys Res 117:C11023. doi:10.1029/2012JC008067

    Article  Google Scholar 

  • Xiu P, Chai F, Shi L, Xue H, Chao Y (2010) A census of eddy activities in the South China Sea during 1993–2007. J Geophys Res 115:C03012. doi:10.1029/2009JC005657

    Article  Google Scholar 

  • Xue H, Chai F, Pettigrew N, Xu D, Shi M, Xu J (2004) Kuroshio intrusion and the circulation in the South China Sea. J Geophys Res 109:C02017. doi:10.1029/2002JC001724

    Article  Google Scholar 

  • Zhao H, Tang DL (2007) Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea. J Geophys Res 112:C02017. doi:10.1029/2006JC003536

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the NSFC (Grant No. 41206033, 91128208 40976024). This research was also sponsored by Shanghai Shuguang Program (11SG24) and program for New Century Excellent Talents in University (NCET-08-0401). The computation is facilitated by the University of Maine High Performance Computing Center. We are grateful to the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Ma.

Appendix

Appendix

The model equations of each compartment can be expressed as:

$$ \frac{{\partial C_{i} }}{\partial t} = {\text{Physics}}(C_{i} ) + {\text{Biology}}(C_{i} ), $$
(A1)

where C i (i = 1, 2, …, 13) denotes each of the 13 compartments listed in Sect. 2. The first term on the right hand side represents physical processes which include vertical/horizontal advection and eddy diffusion. The second term on the right hand side represents biological processes. Fujii et al. (2007) gave detailed equations for small phytoplankton and diatoms. Here, we only show equations of the nitrogen (A2), carbon (A3) and chlorophyll (A4) concentration that represent dynamics of coccolithophores. The short description and corresponding value of parameters are listed in Table 2.

$$ {\text{Biology}}\left( {{\text{S3}}\left( z \right)} \right) \left[ {{\text{mmol N m}}^{ - 3} {\text{day}}^{ - 1} } \right] = {\text{NP3}}\left( z \right) + {\text{RP3}}(z) - {\text{GS3}}(z) - \gamma_{10} \times {\text{S3}}(z) - \frac{\partial }{\partial z}\left( {{\text{W3}} \times {\text{S3}}(z)} \right), $$
(A2)
$$ \begin{gathered} {\text{Biology}}\left( {{\text{C3}}\left( z \right)} \right) \left[ {{\text{mmol C m}}^{ - 3} {\text{day}}^{ - 1} } \right] = (P^{\text{C3}} \left( z \right) - \lambda_{\text{S3}} \times \hbox{max} \left( {\frac{{{\text{NP3}}\left( z \right)}}{{{\text{NP3}}\left( z \right) + {\text{RP3}}\left( z \right)}}, 0.5} \right) \times ({\text{NP3}}(z) + {\text{RP3}}\left( z \right))/(1 - {\text{ES3}})) \\ \; \times (1 - {\text{ES3}}) - {\text{GC3}}(z) - \gamma_{10} \times {\text{C3}}(z) - \frac{\partial }{\partial z}\left( {{\text{W3}} \times {\text{C3}}(z)} \right), \\ \end{gathered} $$
(A3)
$$ {\text{Biology}}\left( {{\text{Chl3}}\left( z \right)} \right) \left[ {{\text{mg Chl m}}^{ - 3} {\text{day}}^{ - 1} } \right] = (P^{\text{Chl3}} \left( z \right) - {\text{GChl3}}(z) - \gamma_{10} \times {\text{Chl3}}(z) - \frac{\partial }{\partial z}\left( {{\text{W3}} \times {\text{Chl3}}(z)} \right), $$
(A4)
Table 2 The model parameters and values

where NP3 and RP3 represent new production and regenerated production, respectively. GS3, GC3, and GChl3 denote the grazing of P3 by Z2 in nitrogen, carbon, and chlorophyll unit, respectively. γ 10 is the mortality coefficient of P3. The last term in equations A2A4 represents vertical sinking of P3, and W3 is the sinking velocity. The detailed expressions of biological process are as follows.

1.1 New production

$$ \begin{gathered} {\text{NP3}}\left( z \right)\left[ {{\text{mmol}}\, {\text{N m}}^{ - 3} {\text{day}}^{ - 1} } \right] = V_{\text{N refS3}}^{\text{C}} \times e^{{ - \Uppsi {\text{NH}}_{4} }} \times \frac{{{\text{NO}}_{3} \left( z \right)}}{{K_{{{\text{NO}}_{3} }} + {\text{NO}}_{3} \left( z \right)}} \times T_{\text{func}} \left( z \right) \times \frac{{1 - f_{\text{nitp3}} \left( z \right)}}{{1.015 - f_{\text{nitp3}} \left( z \right)}} \\ \; \times {\text{C3}}\left( z \right) \times \left( {1 - {\text{ES3}}} \right) \times \left( {1 - e^{{ - \frac{{\alpha^{\text{Chl3}} \theta^{\text{C3}} (z){\text{PAR}}(z)}}{{P_{\text{ref}}^{\text{C3}} \times f_{\text{nitp3}} \left( z \right) \times T_{\text{func}} \left( z \right)}}}} } \right), \\ \end{gathered} $$
(A5)

where PAR is photosynthetically active radiation,

$$ V_{\text{N refS3}}^{\text{C}} = P_{\text{ref}}^{\text{C3}} \times Q_{\hbox{max} } , $$
(A6)
$$ T_{\text{func}} \left( z \right) = \left\{ {\begin{array}{*{20}c} {e^{{ - 4000(\frac{1}{278.15} - \frac{1}{303.15})}} , {\text{Temp}}\left( z \right) < 278.15} \\ {e^{{ - 4000(\frac{1}{298.15} - \frac{1}{303.15})}} , {\text{Temp}}\left( z \right) > 298.15} \\ {e^{{ - 4000(\frac{1}{{{\text{Temp}}(z)}} - \frac{1}{303.15})}} , 278.15 \le {\text{Temp}}\left( z \right) \le 298.15} \\ \end{array} } \right., $$
(A7)
$$ f_{\text{nitp3}} \left( z \right) = \frac{{\frac{{{\text{S3}}\left( z \right)}}{{{\text{C3}}\left( z \right)}} - Q_{\hbox{min} } }}{{Q_{\hbox{max} } - Q_{\hbox{min} } }}, $$
(A8)
$$ \theta^{\text{C3}} \left( z \right) = {\text{Chl3}}(z)/{\text{C3}}(z), $$
(A9)

1.2 Regenerated production

If \( \frac{{{\text{S3}}\left( z \right)}}{{{\text{C3}}\left( z \right)}} \le Q_{\hbox{min} } , \)

$$ \begin{gathered} {\text{RP3}}\left( z \right)\left[ {{\text{mmol N m}}^{ - 3} {\text{day}}^{ - 1} } \right] = V_{\text{N refS3}}^{\text{C}} \times \frac{{{\text{NH}}_{4} \left( z \right)}}{{K_{{{\text{NH}}_{4} }} + {\text{NH}}_{4} \left( z \right)}} \times T_{\text{func}} \left( z \right) \\ \; \times \frac{{1 - f_{\text{nitp3}} \left( z \right)}}{{1.015 - f_{\text{nitp3}} \left( z \right)}} \times {\text{C3}}\left( z \right) \times \left( {1 - {\text{ES3}}} \right), \\ \end{gathered} $$
(A10)

If \( \frac{{{\text{S3}}\left( z \right)}}{{{\text{C3}}\left( z \right)}} > Q_{\hbox{min} } , \)

$$ \begin{gathered} {\text{RP3}}\left( z \right)\left[ {{\text{mmol N m}}^{ - 3} {\text{day}}^{ - 1} } \right] = V_{\text{N refS3}}^{\text{C}} \times \frac{{{\text{NH}}_{4} \left( z \right)}}{{K_{{{\text{NH}}_{4} }} + {\text{NH}}_{4} \left( z \right)}} \times T_{\text{func}} \left( z \right) \times \frac{{1 - f_{\text{nitp3}} \left( z \right)}}{{1.015 - f_{\text{nitp3}} \left( z \right)}} \\ \; \times C3\left( z \right) \times \left( {1 - {\text{ES3}}} \right) \times \left( {1 - e^{{ - \frac{{\alpha^{\text{Chl3}} \theta^{\text{C3}} \left( z \right){\text{PAR}}\left( z \right)}}{{P_{\text{ref}}^{\text{C3}} \times f_{\text{nitp3}} \left( z \right) \times T_{\text{func}} \left( z \right)}}}} } \right) , \\ \end{gathered} $$
(A11)

1.3 Grazing by Z2

$$ {\text{GS3}}\left( z \right)\left[ {{\text{mmol N m}}^{ - 3} {\text{day}}^{ - 1} } \right] = \beta 2 \times \zeta_{10} \times {\text{S3}}\left( z \right) \times \frac{{{\text{Z2}}\left( z \right)}}{{K_{\text{Z2}} + \zeta_{8} + \zeta_{9} }} \times {\text{S3}}(z), $$
(A12)
$$ {\text{GC3}}\left( z \right)\left[ {{\text{mmol C m}}^{ - 3} {\text{day}}^{ - 1} } \right] = \beta 2 \times \zeta_{10} \times {\text{S3}}\left( z \right) \times \frac{{{\text{Z2}}\left( z \right)}}{{K_{\text{Z2}} + \zeta_{8} + \zeta_{9} }} \times {\text{C3}}\left( z \right), $$
(A13)
$$ {\text{GChl3}}\left( z \right)\left[ {{\text{mg Chl m}}^{ - 3} {\text{day}}^{ - 1} } \right] = \beta 2 \times \zeta_{10} \times {\text{S3}}\left( z \right) \times \frac{{{\text{Z2}}\left( z \right)}}{{K_{\text{Z2}} + \zeta_{8} + \zeta_{9} }} \times {\text{Chl3}}(z), $$
(A14)

where

$$ \zeta_{8} = \zeta_{5} \times {\text{S2}}\left( z \right) + \zeta_{6} \times {\text{Z2}}\left( z \right) + \zeta_{7} \times {\text{DN}}\left( z \right) + \zeta_{10} \times {\text{S3}}\left( z \right), $$
(A15)
$$ \zeta_{9} = \zeta_{5} \times {\text{S2}}^{2} \left( z \right) + \zeta_{6} \times {\text{Z2}}^{2} \left( z \right) + \zeta_{7} \times {\text{DN}}^{2} \left( z \right) + \zeta_{10} \times {\text{S3}}^{2} \left( z \right), $$
(A16)

1.4 Carbon uptake

$$ P^{\text{C3}} \left( z \right)\left[ {{\text{mmol C m}}^{ - 3} {\text{day}}^{ - 1} } \right] = P_{\text{ref}}^{\text{C3}} \times f_{\text{nitp3}} \left( z \right) \times T_{\text{func}} \left( z \right) \times \left( {1 - e^{{ - \frac{{\alpha^{\text{Chl3}} \theta^{\text{C3}} \left( z \right){\text{PAR}}\left( z \right)}}{{P_{\text{ref}}^{\text{C3}} \times f_{\text{nitp3}} \left( z \right) \times T_{\text{func}} \left( z \right)}}}} } \right) \times {\text{C3}}(z), $$
(A17)

1.5 Chlorophyll uptake

$$ P^{\text{Chl3}} \left( z \right)\left[ {{\text{mg Chl m}}^{ - 3} {\text{day}}^{ - 1} } \right] = \theta_{\text{Nmax}}^{\text{Chl3}} \times \frac{{P_{\text{ref}}^{\text{C3}} \times f_{\text{nitp3}} \left( z \right) \times T_{\text{func}} \left( z \right) \times \left( {1 - e^{{ - \frac{{\alpha^{\text{Chl3}} \theta^{\text{C3}} \left( z \right){\text{PAR}}\left( z \right)}}{{P_{\text{ref}}^{\text{C3}} \times f_{\text{nitp3}} \left( z \right) \times T_{\text{func}} \left( z \right)}}}} } \right)}}{{\alpha^{\text{Chl3}} \theta^{\text{C3}} \left( z \right){\text{PAR}}\left( z \right)}} \times ({\text{NP3}}\left( z \right) + {\text{RP3}}\left( z \right)). $$
(A18)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Chai, F., Xiu, P. et al. Modeling the long-term variability of phytoplankton functional groups and primary productivity in the South China Sea. J Oceanogr 69, 527–544 (2013). https://doi.org/10.1007/s10872-013-0190-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-013-0190-8

Keywords

Navigation