Skip to main content
Log in

Patterns of K1 and M2 internal tides and their seasonal variations in the northern South China Sea

  • Reply
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Seasonal variations of baroclinic tides for K1 and M2 constituents were separately studied using two-dimensional numerical simulations along the 21°N section of the northern South China Sea (SCS). Results show that the continental slope of the northern SCS and the west ridge of the Luzon Strait are supercritical to K1 internal tides, which may be trapped in the deep basin of the SCS and form standing or partial standing waves. Meanwhile, these areas are sub-critical to M2 internal tides, which can transmit onto the shelf and are seldom reflected back into the basin. The trapped K1 internal tides are dominated by mode-2 and mode-3 in summer and by mode-1 and mode-3 in winter. Moreover, high mode K1 internal tides account for nearly 20–40 % of the total energy density in winter and 15–20 % in summer. The pattern of K1 internal tides in the basin is mainly determined by the percentage of reflected energy from the continental slope. The phase difference between the incoming mode-1 and mode-2 K1 internal tides near the continental slope are nearly out of phase in winter, which means that the percentage of reflection of the K1 internal tide is larger than that in summer. Both the convergence and high mode K1 internal tides can enhance the vertical shear. The above results indicate that, in the deep basin of the SCS, water mixing potentially induced by internal tides in winter is stronger than in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alford MH, Gregg MC, Merrifield MA (2006) Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J Phys Oceanogr 36:997–1018

    Article  Google Scholar 

  • Alford MH, MacKinnon JA, Nash JD, Simmons H, Pickering A, Klymak JM, Pinkel R, Sun O, Rainville L, Musgrave R, Beitzel T, Fu K, Lu C (2011) Energy flux and dissipation in Luzon Strait: two tales of two ridges. J Phys Oceanogr 41(11):2211–2222

    Article  Google Scholar 

  • Blayo E, Debreu L (2005) Revisiting open boundary conditions from the point of view of characteristic variables. Ocean Modell 9 (3):231–252

    Google Scholar 

  • Buijsman MC, Kanarska Y, McWilliams JC (2010a) On the generation and evolution of nonlinear internal waves in the South China Sea. J Geophys Res 115(C2):C2012

    Google Scholar 

  • Buijsman MC, McWilliams JC, Jackson CR (2010b) East-west asymmetry in nonlinear internal waves from Luzon Strait. J Geophys Res 115(C10):C10057

    Google Scholar 

  • Chang M, Lien R, Tang TY, D’Asaro EA, Yang YJ (2006) Energy flux of nonlinear internal waves in northern South China Sea. Geophys Res Lett 33(3):L3607

    Article  Google Scholar 

  • Chao S, Ko D, Lien R, Shaw P (2007) Assessing the west ridge of Luzon Strait as an internal wave mediator. J Oceanogr 63(6):897–911

    Article  Google Scholar 

  • Duda TF, Lynch JF, Irish JD, Beardsley RC, Ramp SR, Ching-Sang C, Tswen YT, Yang YJ (2004) Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J Ocean Eng 29(4):1105–1130

    Article  Google Scholar 

  • Dunphy M (2009) The influence of Mesoscale Eddies on the internal tide. University of Waterloo, Ontario

  • Gerkema T, Lam FPA, Maas LRM (2004) Internal tides in the Bay of Biscay: conversion rates and seasonal effects. Deep Sea Res Part II 51(25–26):2995–3008

    Article  Google Scholar 

  • Hsu M, Liu AK, Liu C (2000) A study of internal waves in the China Seas and Yellow Sea using SAR. Cont Shelf Res 20(4–5):389–410

    Google Scholar 

  • Jan S, Chern C, Wang J, Chao S (2007) Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J Geophys Res 112(C6):C6019

    Google Scholar 

  • Jan S, Lien R, Ting C (2008) Numerical study of baroclinic tides in Luzon Strait. J Oceanogr 64(5):789–802

    Article  Google Scholar 

  • Jan S, Chern C, Wang J, Chiou M (2011) Generation and propagation of baroclinic tides modified by the Kuroshio in the Luzon Strait. J Geophys Res 117(C2):C02019

    Google Scholar 

  • Kelly SM, Nash JD (2010) Internal-tide generation and destruction by shoaling internal tides. Geophys Res Lett 37(23):L23611

    Article  Google Scholar 

  • Khatiwala S (2003) Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep Sea Res I 50:3–21

    Article  Google Scholar 

  • Klymak JM, Alford MH, Pinkel R, Lien R, Yang YJ, Tang T (2011) The breaking and scattering of the internal tide on a continental slope. J Phys Oceanogr 41(5):926–945

    Article  Google Scholar 

  • Large W, McWilliams J, Doney S (1994) Oceanic vertical mixing: a review and a model with nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Legg S (2004) Internal tides generated on a corrugated continental slope. Part I: cross-slope Barotropic forcing*. J Phys Oceanogr 34(1):156–173

    Article  Google Scholar 

  • Legg S, Huijts KMH (2006) Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep Sea Res Part II 53(1–2):140–156

    Article  Google Scholar 

  • Li H, Song D, Chen X, Qian H, Mu L, Song J (2011) Numerical study of M2 internal tide generation and propagation in the Luzon Strait. Acta Oceanol Sinica 30(5):23–32

    Article  Google Scholar 

  • Lynch JF, Ramp SR, Ching-Sang C, Tswen YT, Yang YJ, Simmen JA (2004) Research highlights from the Asian Seas international acoustics experiment in the South China Sea. IEEE J Ocean Eng 29(4):1067–1074

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102(C3):5753–5766

    Google Scholar 

  • Martini KI, Alford MH, Nash JD, Kunze E, Merrifield MA (2007) Diagnosing a partly standing internal wave in Mamala Bay, Oahu. Geophys Res Lett 34(17):L17604

    Article  Google Scholar 

  • Miao C, Chen H, Lü X (2011) An isopycnic-coordinate internal tide model and its application to the South China Sea. Chin J Oceanol Limnol 29(6):1339–1356

    Article  Google Scholar 

  • Mitchum GT, Chiswell SM (2000) Coherence of internal tide modulations along the Hawaiian Ridge. J Geophys Res Ocean 105(C12):28653–28661

    Google Scholar 

  • Nash JD, Kunze E, Toole JM, Schmitt RW (2004) Internal tide reflection and turbulent mixing on the continental slope. J Phys Oceanogr 34(5):1117–1134

    Article  Google Scholar 

  • Nikurashin M, Ferrari R (2009) Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J Phys Oceanogr 40(5):1055–1074

    Article  Google Scholar 

  • Nikurashin M, Legg S (2011) A mechanism for local dissipation of internal tides generated at rough topography. J Phys Oceanogr 41(2):378–395

    Article  Google Scholar 

  • Niwa Y, Hibiya T (2004) Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res 109(C4):C4027

    Google Scholar 

  • Qu T, Girton JB, Whitehead JA (2006) Deepwater overflow through Luzon Strait. J Geophys Res 111(C1):C1002

    Google Scholar 

  • Shaw PT, Ko DS, Chao SY (2009) Internal solitary waves induced by flow over a ridge: with applications to the northern South China Sea. J Geophys Res 114:C02019

    Google Scholar 

  • Simmons HL, Hallberg RW, Arbic BK (2004) Internal wave generation in a global baroclinic tide model. Deep Sea Res Part II 51(25–26):3043–3068

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  • Tian J, Yang Q, Zhao W (2009) Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr 39(12):3191–3203

    Article  Google Scholar 

  • Zhao Z, Alford MH (2006) Source and propagation of internal solitary waves in the northeastern South China Sea. J Geophys Res 111(C11):C11012

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University (NCET-10-0764), the National High Technology Research and Development (863) Program of China (2013AA09A501, 2013AA09A502), and the National Natural Science Foundation of China (91028008, 41176008, 41176010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Miao, C. & Zhao, W. Patterns of K1 and M2 internal tides and their seasonal variations in the northern South China Sea. J Oceanogr 69, 481–494 (2013). https://doi.org/10.1007/s10872-013-0183-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-013-0183-7

Keywords

Navigation