Skip to main content
Log in

Numerical study of baroclinic tides in Luzon Strait

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford, M. H. (2003): Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159–163.

    Article  Google Scholar 

  • Alford, M. H., M. C. Gregg and M. A. Merrifield (2006): Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 997–1018.

    Article  Google Scholar 

  • Blumberg, A. F. and L. H. Kantha (1985): Open boundary condition for circulation models. J. Hydra. Eng., 111(2), 237–255.

    Article  Google Scholar 

  • Blumberg, A. F. and G. F. Mellor (1987): A description of a three dimensional coastal ocean circulation model. p. 1–16. In Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Stud., Vol. 4, ed. by N. Heaps, AGU, Washington, D.C.

    Chapter  Google Scholar 

  • Centurioni, L. R., P. P. Niller and D.-K. Lee (2004): Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. J. Phys. Oceanogr., 34, 113–121.

    Article  Google Scholar 

  • Chang, M.-H., R.-C. Lien, T. Y. Tang, E. A. D’Asaro and Y. J. Yang (2006): Energy flux of nonlinear internal waves in northern South China Sea. Geophys. Res. Lett., 33, L03607, doi: 10.1029/2005GL025196.

    Google Scholar 

  • Chao, S.-Y., D.-S. Ko, R.-C. Lien and P.-T. Shaw (2007): Assessing the west ridge of Luzon Strait as an internal wave mediator. J. Oceanogr., 63, 897–911.

    Article  Google Scholar 

  • Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C.-S. Chiu, T.-Y. Tang and Y.-J. Yang (2004): Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J. Oceanic Eng., 29(4), 1105–1130.

    Article  Google Scholar 

  • Fang, G., Y.-K. Kwok, K. Yu and Y. Zhu (1999): Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res., 19, 845–869.

    Article  Google Scholar 

  • Foreman, M. G. G., R. F. Henry, R. A. Walters and V. A. Ballantyne (1993): A finite element model for tides and resonance along the north coast of British Columbia. J. Geophys. Res., 98, 2509–2532.

    Article  Google Scholar 

  • Gerkema, T. and J. T. F. Zimmerman (1995): Generation of nonlinear internal tides and solitary waves. J. Phys. Oceanogr., 25, 1081–1094.

    Article  Google Scholar 

  • Hu, J., H. Kawamura, H. Hong and Y. Qi (2000): A review on the currents in the South China Sea: seasonal circulation, South China Sea Current and Kuroshio intrusion. J. Oceanogr., 56, 607–624.

    Article  Google Scholar 

  • Jan, S., C.-S. Chern and J. Wang (2002): Transition of tidal waves from the East to South China Seas over the Taiwan Strait: Influence of the abrupt step in the topography. J. Oceanogr., 58, 837–850.

    Article  Google Scholar 

  • Jan, S., C.-T. A. Chen, Y.-Y. Tu and H.-S. Tsai (2004): Physical properties of thermal plumes from a nuclear power plant in the southernmost Taiwan. J. Mar. Sci. Tech., 12(5), 433–441.

    Google Scholar 

  • Jan, S., C.-S. Chern, J. Wang and S.-Y. Chao (2007): Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112, C06019, doi: 10.1029/2006JC004003.

    Article  Google Scholar 

  • Klymak, J. M., J. N. Moum, J. D. Nash, E. Kunze, J. B. Girton, G. S. Carter, C. M. Lee, T. B. Sanford and M. C. Gregg (2006): An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 1148–1164.

    Article  Google Scholar 

  • Lee, C. M., E. Kunze, T. B. Sanford, J. D. Nash, M. A. Merrifield and P. E. Holloway (2006): Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 1165–1183.

    Article  Google Scholar 

  • Lefevre, F., C. Le Provost and F. H. Lyard (2000): How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea. J. Geophys. Res., 105(C4), 8707–8725.

    Article  Google Scholar 

  • Li, L., W. D. Nowlin, Jr. and J. Su (1998): Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Res. I, 45, 1469–1482.

    Article  Google Scholar 

  • Lien, R. C. and M. C. Gregg (2001): Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 4575–4591.

    Article  Google Scholar 

  • Lien, R.-C., T. Y. Tang, M. H. Chang and E. A. D’Asaro (2005): Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett., 32, L05615.

    Article  Google Scholar 

  • Lueck, R. G. and T. D. Mudge (1997): Topographically induced mixing around a shallow seamount. Science, 276, 1831–1833.

    Article  Google Scholar 

  • Matsumoto, K., T. Takanezawa and M. Ooe (2000): Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J. Oceanogr., 56, 567–581.

    Article  Google Scholar 

  • Metzger, E. J. and H. E. Hurlbert (1996): Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res., 101, 12331–12352.

    Article  Google Scholar 

  • Niwa, Y. and T. Hibiya (2004): Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923.

    Article  Google Scholar 

  • Osborn, T. R. (1980): Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83–89.

    Article  Google Scholar 

  • Pugh, D. T. (1987): Tides, Surges and Mean Sea-Level. Wiley, Chichester, 471 pp.

    Google Scholar 

  • Qu, T., J. B. Griton and J. A. Whitehead (2006): Deepwater overflow through Luzon Strait. J. Geophys. Res., 111, C01002, doi:10.1029/2005JC003139.

    Article  Google Scholar 

  • Rainville, L. and R. Pinkel (2004): Observations of energetic high-wavenumber internal waves in the Kuroshio. J. Phys. Oceanogr., 36, 1104–1122.

    Article  Google Scholar 

  • Ramp, S. R., T.-Y. Tang, T. F. Duda, J. F. Lynch, A. K. Liu, C.-S. Chiu, F. L. Bahr, H.-R. Kim and Y.-J. Yang (2004): Internal solitons in the northeastern South China Sea Part I: sources and deep water propagation. IEEE J. Oceanic Eng., 29(4), 1157–1181.

    Article  Google Scholar 

  • Tian, J., Q. Yang, X. Liang, L. Xie, D. Hu, F. Wang and T. Qu (2006): Observation of Luzon Strait transport. Geophys. Res. Lett., 33, L19607, doi:10.1029/2006GL026272.

    Article  Google Scholar 

  • Toole, J. M., R. W. Schmitt and K. L. Polzin (1994): Estimates of diapycnal mixing in the abyssal Ocean. Science, 264(5162), 1120–1132, DOI: 10.1126.

    Article  Google Scholar 

  • Yanagi, T. and T. Takao (1998): A numerical simulation of tides and tidal currents in the South China Sea. Acta Oceanogr. Taiwan., 37(1), 17–29.

    Google Scholar 

  • Yang, Y. J., T.-Y. Tang, M.-H. Chang, A. K. Liu, M.-K. Hsu and S. R. Ramp (2004): Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE J. Oceanic Eng., 29, 1182–1199.

    Article  Google Scholar 

  • Zhao, Z. and M. H. Alford (2006): Source and propagation of internal solitary waves in the northeastern South China Sea. J. Geophys. Res., 111, C11012, doi:10.1029/2006JC003644.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Jan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jan, S., Lien, RC. & Ting, CH. Numerical study of baroclinic tides in Luzon Strait. J Oceanogr 64, 789–802 (2008). https://doi.org/10.1007/s10872-008-0066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-008-0066-5

Keywords

Navigation