Skip to main content
Log in

Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The global distributions of the major semidiurnal (M2 and S2) and diurnal (K1 and O1) baroclinic tide energy are investigated using a hydrostatic sigma-coordinate numerical model. A series of numerical simulations using various horizontal grid spacings of 1/15–1/5° shows that generation of energetic baroclinic tides is restricted over representative prominent topographic features. For example, nearly half of the diurnal (K1 and O1) baroclinic tide energy is excited along the western boundary of the North Pacific from the Aleutian Islands down to the Indonesian Archipelago. It is also found that the rate of energy conversion from the barotropic to baroclinic tides is very sensitive to the horizontal grid spacing as well as the resolution of the model bottom topography; the conversion rate integrated over the global ocean increases exponentially as the model grid spacing is reduced. Extrapolating the calculated results in the limit of zero grid spacing yields the estimate of the global conversion rate to be 1105 GW (821, 145, 102, 53 GW for M2, S2, K1, and O1 tidal constituents, respectively). The amount of baroclinic tide energy dissipated in the open ocean below a depth of 1000 m, in particular, is estimated to be 500–600 GW, which is comparable to the mixing energy estimated by Webb and Suginohara (Nature 409:37, 2001) as needed to sustain the global overturning circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps N (ed) Three-dimensional coastal ocean models. AGU, Washington, DC

    Chapter  Google Scholar 

  • Carter GS, Merrifield MA, Becker JM, Katsumata K, Gregg MC, Luther DS, Levine MD, Boyd TJ, Firing YL (2008) Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J Phys Oceanogr 38(10):2205–2223

    Article  Google Scholar 

  • Decloedt T, Luther DS (2010) On a simple empirical parameterization of topography-catalyzed diapycnal mixing in the abyssal ocean. J Phys Oceanogr 40(3):487–508

    Article  Google Scholar 

  • Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405(6788):775–778

    Article  Google Scholar 

  • Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, sources and sinks. Annu Rev Fluid Mech 41:253–282

    Article  Google Scholar 

  • Furuichi N, Hibiya T, Niwa N (2008) Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J Geophys Res 113(C09034). doi:https://doi.org/10.1029/2008JC004768

  • Hasumi H, Suginohara N (1999) Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J Geophys Res 104(C10):23367–23374

    Article  Google Scholar 

  • Iwamae N, Hibiya T, Watanabe M (2009) Numerical study of the bottom-intensified tidal mixing using an “eikonal approach”. J Geophys Res 114(C05022). doi:https://doi.org/10.1029/2008JC005130

  • Jayne SR, St. Laurent LC (2001) Parameterizing tidal dissipation over rough topography. Geophys Res Lett 28(5):811–814

    Article  Google Scholar 

  • Kantha LH, Tierney CC (1997) Global baroclinic tides. Prog Oceanogr 40:163–178

    Article  Google Scholar 

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45(RG2001). doi:https://doi.org/10.1029/2004RG000166

  • Levitus S, Boyer TP (1994) World ocean atlas 1994. In: NOAA atlas NESDIS 4, vol 4: temperature. US Dept of Commerce, Washington DC

  • Levitus S, Burgett R, Boyer TP (1994) World ocean atlas 1994. In: NOAA atlas NESDIS 3, vol 3: salinity. US Dept of Commerce, Washington DC

  • Matsumoto K, Takanezawa T, Ooe M (2000) Ocean tide models developed by assimilating Topex/Poseidon altimeter data into hydrodynamical model: a global model and a regional model around Japan. J Oceanogr 56(5):567–581

    Article  Google Scholar 

  • Morozov EG (1995) Semidiurnal internal wave global field. Deep Sea Res Part I 42(1):135–148

    Article  Google Scholar 

  • Munk WH (1981) Internal waves and small-scale processes. In: Warren BS, Wunsch C (eds) Evolution of physical oceanography. MIT Press, Cambridge

    Google Scholar 

  • Munk WH, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res Part I 45(12):1977–2010

    Article  Google Scholar 

  • Nakamura T, Isoda Y, Mitsudera H, Takagi S, Nagasawa M (2010) Breaking of unsteady lee waves generated by diurnal tides. Geophys Res Lett 37(L0462). doi:https://doi.org/10.1029/2009GL041456

  • Niwa Y, Hibiya T (2004) Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res 109(C04027). doi:https://doi.org/10.1029/2003JC001923

  • Nycander J (2005) Generation of internal waves in the deep ocean by tides. J Geophys Res 106(C10028). doi:https://doi.org/10.1029/2004JC002487

  • Pacanowski RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11(11):1443–1451

    Article  Google Scholar 

  • Schmitz WJ (1995) On the interbasin-scale thermohaline circulation. Rev Geophys 33(2):151–174

    Article  Google Scholar 

  • Simmons HL, Hallberg RW, Arbic BK (2004) Internal wave generation in a global baroclinic tide model. Deep Sea Res Part II 51(25–26):3043–3068

    Article  Google Scholar 

  • Sjöberg B, Stigebrandt A (1992) Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Deep Sea Res Part A 39(2A):269–291

    Article  Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334):1956–1962

    Article  Google Scholar 

  • St. Laurent LC, Simmons HL, Jayne SR (2002) Estimating tidally driven mixing in the deep ocean. Geophys Res Lett 29(2016). doi:https://doi.org/10.1029/2002GL015633

    Article  Google Scholar 

  • Tanaka Y, Hibiya T, Niwa Y, Iwamae N (2010) Numerical study of K1 internal tides in the Kuril Straits. J Geophys Res 115(C09016). doi:https://doi.org/10.1029/2009JC005903

  • Webb DJ, Suginohara N (2001) Vertical mixing in the ocean. Nature 409(6816):37

    Article  Google Scholar 

  • Zhai X, Greatbatch RJ, Eden C, Hibiya T (2009) On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J Phys Oceanogr 39(11):3040–3045

    Article  Google Scholar 

  • Zilberman N, Becker JM, Merrifield MA, Carter GS (2009) Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. J Phys Oceanogr 39(10):2635–2651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Niwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niwa, Y., Hibiya, T. Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J Oceanogr 67, 493–502 (2011). https://doi.org/10.1007/s10872-011-0052-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-011-0052-1

Keywords

Navigation