Skip to main content

Advertisement

Log in

Progress of North Pacific mode water research in the past decade

  • Special Section: Review
  • New developments in mode-water research: Dynamic and climatic effects
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

This article reviews the progress in research on North Pacific mode waters of the past decade from the physical oceanographic perspective. The accumulation of satellite altimeter sea surface height data, the rapid growth of the Argo profiling float array, and the advancement in eddy-resolving ocean general circulation models have greatly improved the traditional views on the mode waters that were formed prior to the 1990s based on the analyses of historical temperature/salinity data. Areas where significant progress was made include: (1) descriptions of the mode waters’ distributions and properties with fine spatial scales, particularly in their formation regions in winter where observational data had been insufficient; (2) clarifications of the mode waters’ formation and subduction processes relating to the large-scale mean circulation, as well as to the time-varying mesoscale eddy field; (3) impacts of the mode waters’ circulation and dissipation processes on the climate and biogeochemical processes; and (4) dynamic versus thermodynamic causes underlying the mode waters’ decadal changes. In addition to the review, future directions for mode water research are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The term “mode water,” introduced by Masuzawa (1969), was subsequently applied to any thick, broadly distributed, near-surface layer characterized by low PV (Hanawa and Talley 2001). Therefore, mode waters nowadays are not necessarily characterized by uniformity in terms of temperature and salinity. In other words, temperature and salinity might be stratified in a compensating way within a pycnostad of mode waters.

  2. In this review, the term “subarctic front” is used for a density-compensating front between the warmer, saltier water in the subtropics and the colder, fresher water in the subarctics, characterized by the outcrop of the 33.0–33.8 isohalines (Roden 1970, 1972; Zhang and Hanawa 1993; Yuan and Talley 1996), as in the literature of physical oceanography. This front often separates into two or more fronts, particularly in the eastern North Pacific, and is also called the subarctic frontal zone. In the literature of fisheries oceanography (e.g., Favorite et al. 1976; Yasuda 2003), the term “subarctic front” is referred to the front at the southern boundary of subsurface temperature inversions characterizing the subarctics, represented by the 4°C isotherm standing almost vertically below the 100-m depth (Uda 1963; Favorite et al. 1976). This front is called the “polar front” in this review, as in the literature of physical oceanography.

  3. An intense hydrographic survey conducted in spring 2003 indicates that the subarctic front and the polar front coincide with each other in this longitude range (Eitarou Oka, personal communication 2011).

  4. In Yasuda (2003), TRMW is referred to as “Dense Central Mode Water.”

References

  • Andreev AG, Kusakabe M (2001) Interdecadal variability in dissolved oxygen in the intermediate water layer of the western subarctic gyre and Kuril Basin (Okhotsk Sea). Geophys Res Lett 28:2453–2456

    Article  Google Scholar 

  • Aoki Y, Suga T, Hanawa K (2002) Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. J Phys Oceanogr 32:2299–2311

    Article  Google Scholar 

  • Bates NR, Pequignet AC, Johnson RJ, Gruber N (2002) A variable sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature 420:489–493

    Article  Google Scholar 

  • Bingham FM (1992) Formation and spreading of subtropical mode water in the North Pacific. J Geophys Res 97:11177–11189

    Article  Google Scholar 

  • Bingham FM, Suga T (2006) Distributions of mixed layer properties in North Pacific water mass formation areas: comparison of Argo floats and World Ocean Atlas 2001. Ocean Sci 2:61–70

    Article  Google Scholar 

  • Bingham FM, Suga T, Hanawa K (1992) Comparison of upper ocean thermal conditions in the western North Pacific between two pentads: 1938–42 and 1978–82. J Oceanogr 48:405–425

    Article  Google Scholar 

  • Cannon GA (1966) Tropical waters in the western Pacific Oceans, August–September 1957. Deep Sea Res 13:1139–1148

    Google Scholar 

  • Cronin MF, Meinig C, Sabine CL, Ichikawa H, Tomita H (2008) Surface mooring network in the Kuroshio Extension. IEEE Syst J 2:424–430

    Article  Google Scholar 

  • Davis XJ, Rothstein LM, Dewar WK, Menemenlis D (2011) Numerical investigations of seasonal and interannual variability of North Pacific Subtropical Mode water and its implications for Pacific climate variability. J Clim (in press)

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Deser C, Alexander MA, Timlin MS (1996) Upper-ocean thermal variations in the North Pacific during 1970–1991. J Clim 9:1840–1855

    Article  Google Scholar 

  • Ebuchi N, Hanawa K (2001) Trajectory of mesoscale eddies in the Kuroshio recirculation region. J Oceanogr 57:471–480

    Article  Google Scholar 

  • Emerson S, Watanabe YW, Ono T, Mecking S (2004) Temporal trends in apparent oxygen utilization in the upper pycnocline of the North Pacific: 1980–2000. J Oceanogr 60:139–147

    Article  Google Scholar 

  • Endoh T, Jia Y, Richards KJ (2006) Sensitivity of the ventilation process in the North Pacific to eddy-induced tracer transport. J Phys Oceanogr 36:1895–1911

    Article  Google Scholar 

  • Favorite F, Dodimead AJ, Nasu K (1976) Oceanography of the Subarctic Pacific region, 1960–71. Bull Int North Pac Comm 33:1–187

    Google Scholar 

  • Freeland H, Roemmich D, Garzoli S, LeTraon P, Ravichandran M, Riser S, Thierry V, Wijffels S, Belbeoch M, Gould J, Grant F, Ignazewski M, King B, Klein B, Mork K, Owens B, Pouliquen S, Sterl A, Suga T, Suk M, Sutton P, Troisi A, Velez-Belchi P, Xu J (2010) Argo—a decade of progress. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, 21–25 September 2009, vol 2. ESA Publication WPP-306, Venice, Italy. doi:10.5270/OceanObs09.cwp.32

  • Graham NE (1994) Decadal-scale climate variability in the 1970s and 1980s: observations and model results. Clim Dyn 10:135–159

    Article  Google Scholar 

  • Gregg MC, Sanford TB (1980) Signatures of mixing from the Bermuda Slope, the Sargasso Sea and the Gulf Stream. J Phys Oceanogr 10:105–127

    Article  Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Hanawa K (1987) Interannual variations of the winter-time outcrop area of subtropical mode water in the western North Pacific Ocean. Atmos Ocean 25:358–374

    Article  Google Scholar 

  • Hanawa K (1996) Interdecadal variability in the North Pacific Ocean: subduction oscillation. Paper presented at WOCE pacific workshop, U.S. WOCE Office, Newport Beach, CA, August 19–23

  • Hanawa K, Hoshino I (1988) Temperature structure and mixed layer in the Kuroshio region over the Izu Ridge. J Mar Res 46:683–700

    Article  Google Scholar 

  • Hanawa K, Kamada J (2001) Variability of core layer temperature (CLT) of the North Pacific subtropical mode water. Geophys Res Lett 28:2229–2232

    Article  Google Scholar 

  • Hanawa K, Sugimoto S (2004) ‘Reemergence’ areas of winter sea surface temperature anomalies in the world’s oceans. Geophys Res Lett 31:L10303. doi:10.1029/2004GL019904

    Article  Google Scholar 

  • Hanawa K, Talley LD (2001) Mode waters. In: Church J et al (eds) Ocean circulation and climate. Academic Press, London, pp 373–386

    Chapter  Google Scholar 

  • Hanawa K, Yoritaka H (2001) North Pacific subtropical mode waters observed in long XBT cross sections along 32.5°N line. J Oceanogr 57:679–692

    Article  Google Scholar 

  • Hare SR (1996) Low frequency climate variability and salmon production. Ph.D. dissertation, University of Washington, Seattle, WA

  • Hasumi H, Tatebe H, Kawasaki T, Kurogi M, Sakamoto TT (2010) Progress of North Pacific modeling over the past decade. Deep Sea Res II 57:1188–1200

    Article  Google Scholar 

  • Hautala SL, Roemmich DH (1998) Subtropical mode water in the Northeast Pacific basin. J Geophys Res 103:13055–13066

    Article  Google Scholar 

  • Hazeleger W, Drijfhout SS (2000) Eddy subduction in a model of the subtropical gyre. J Phys Oceanogr 30:677–695

    Article  Google Scholar 

  • Hosoda S, Xie SP, Takeuchi K, Nonaka M (2001) Eastern North Pacific subtropical mode water in a GCM: formation mechanism and salinity effects. J Geophys Res 106:19671–19681

    Article  Google Scholar 

  • Hosoda S, Xie SP, Takeuchi K, Nonaka M (2004) Interdecadal temperature variations in the North Pacific central mode water simulated by an OGCM. J Oceanogr 60:865–877

    Google Scholar 

  • Huang RX, Qiu B (1994) Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J Phys Oceanogr 24:1608–1622

    Article  Google Scholar 

  • Inui T, Takeuchi K, Hanawa K (1999) A numerical investigation of the subduction process in response to an abrupt intensification of westerlies. J Phys Oceanogr 29:1993–2015

    Article  Google Scholar 

  • Isoguchi O, Kawamura H, Oka E (2006) Quasi-stationary jets transporting surface warm waters across the transition zone between the subtropical and the subarctic gyres in the North Pacific. J Geophys Res 111:C10003. doi:10.1029/2005JC003402

    Article  Google Scholar 

  • Itoh S, Yasuda I (2010a) Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension region detected from the distribution of the sea surface height anomaly. J Phys Oceanogr 40:1018–1034

    Article  Google Scholar 

  • Itoh S, Yasuda I (2010b) Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific. J Phys Oceanogr 40:2624–2642

    Article  Google Scholar 

  • Itoh S, Shimizu Y, Ito S, Yasuda I (2011) Evolution and decay of a warm-core ring within the western subarctic gyre of the North Pacific, as observed by profiling floats. J Oceanogr (in press)

  • Iwamaru H, Kobashi F, Iwasaka N (2010) Temporal variations of the winter mixed layer south of the Kuroshio extension. J Oceanogr 66:147–153

    Article  Google Scholar 

  • Jensen TG, Campbell TJ, Allard RA, Small RJ, Smith TA (2011) Turbulent heat fluxes during an intense cold-air outbreak over the Kuroshio Extension Region: results from a high-resolution coupled atmosphere–ocean model. Ocean Dyn 61:657–674

    Google Scholar 

  • Joyce TM (2011) New perspectives on Eighteen Degree Water formation in the North Atlantic. J Oceanogr (this issue)

  • Kako S, Kubota M (2007) Variability of mixed layer depth in Kuroshio/Oyashio Extension region: 2005–2006. Geophys Res Lett 34:L11612. doi:10.1029/2007GL030362

    Article  Google Scholar 

  • Kawabe M (1995) Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J Phys Oceanogr 25:3103–3117

    Article  Google Scholar 

  • Kawai H (1972) Hydrography of the Kuroshio Extension. In: Stommel H, Yoshida K (eds) Kuroshio—its physical aspects. University of Tokyo Press, Tokyo, pp 235–352

    Google Scholar 

  • Kelly KA, Thompson L, Cheng W, Metzger EJ (2007) Evaluation of HYCOM in the Kuroshio Extension region using new metrics. J Geophys Res 112:C01004. doi:10.1029/2006JC003614

    Article  Google Scholar 

  • Kelly KA, Small RJ, Samelson RM, Qiu B, Joyce T, Cronin M, Kwon YO (2010) Western boundary currents and frontal air-sea interaction: Gulf Stream and Kuroshio Extension. J Clim 23:5644–5667

    Article  Google Scholar 

  • Kobashi F, Kubokawa A (2011) Review on North Pacific Subtropical Countercurrent and Subtropical Front: role of mode water in ocean circulation and climate. J Oceanogr (this issue)

  • Kobashi F, Xie SP (2011) Interannual variability of the North Pacific Subtropical Countercurrent: role of local ocean–atmosphere interaction. J Oceanogr (this issue)

  • Kobashi F, Mitsudera H, Xie SP (2006) Three subtropical fronts in the North Pacific: observational evidence for mode water-induced subsurface frontogenesis. J Geophys Res 111:C09033. doi:10.1029/2006JC003479

    Article  Google Scholar 

  • Kobashi F, Xie SP, Iwasaka N, Sakamoto TT (2008) Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J Clim 21:5960–5975

    Article  Google Scholar 

  • Kouketsu S, Tomita H, Oka E, Hosoda S, Kobayashi T, Sato K (2011) The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. J Oceanogr (this issue)

  • Krémeur AS, Lévy M, Aumont O, Reverdin G (2009) Impact of the subtropical mode water biogeochemical properties on primary production in the North Atlantic: new insights from an idealized model study. J Geophys Res 114:C07019. doi:10.1029/2008JC005161

    Article  Google Scholar 

  • Kubokawa A (1997) A two-level model of subtropical gyre and subtropical countercurrent. J Oceanogr 53:231–244

    Google Scholar 

  • Kubokawa A (1999) Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. J Phys Oceanogr 29:1314–1333

    Article  Google Scholar 

  • Kubokawa A, Inui T (1999) Subtropical countercurrent in an idealized ocean GCM. J Phys Oceanogr 29:1303–1313

    Article  Google Scholar 

  • Kubokawa A, Xie SP (2002) On steady response of a ventilated thermocline to enhanced Ekman pumping. J Oceanogr 58:565–575

    Article  Google Scholar 

  • Ladd C, Thompson L (2000) Formation mechanisms for North Pacific central and eastern subtropical mode waters. J Phys Oceanogr 30:868–887

    Article  Google Scholar 

  • Ladd C, Thompson L (2001) Water mass formation in an isopycnal model of the North Pacific. J Phys Oceanogr 31:1517–1537

    Article  Google Scholar 

  • Ladd C, Thompson L (2002) Decadal variability of North Pacific central mode water. J Phys Oceanogr 32:2870–2881

    Article  Google Scholar 

  • Ledwell JR, Watson AJ, Law CD (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment. Nature 364:701–703

    Article  Google Scholar 

  • Lee HC (2009) Impact of atmospheric CO2 doubling on the North Pacific subtropical mode water. Geophys Res Lett 36:L06602. doi:10.1029/2008GL037075

    Article  Google Scholar 

  • Liu Q, Hu H (2007) A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island. Geophys Res Lett 34:L12710. doi:10.1029/2007GL029510

    Article  Google Scholar 

  • Luo Y, Liu Q, Rothstein LM (2009) Simulated response of North Pacific mode waters to global warming. Geophys Res Lett 36:L23609. doi:10.1029/2009GL040906

    Article  Google Scholar 

  • Luyten JR, Pedlosky J, Stommel H (1983) The ventilated thermocline. J Phys Oceanogr 13:292–309

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Marshall D (1997) Subduction of water masses in an eddying ocean. J Mar Res 55:201–222

    Article  Google Scholar 

  • Marshall JC, Nurser AJG, Williams RG (1993) Inferring the subduction rate and period over the North Atlantic. J Phys Oceanogr 23:1315–1329

    Article  Google Scholar 

  • Masumoto Y (2010) Sharing the results of a high-resolution ocean general circulation model under a multi-discipline framework—a review of OFES activities. Ocean Dyn 60:633–652

    Article  Google Scholar 

  • Masuzawa J (1969) Subtropical mode water. Deep Sea Res 16:463–472

    Google Scholar 

  • Mecking S, Warner MJ (2001) On the subsurface CFC maxima in the subtropical North Pacific thermocline and their relation to mode waters and oxygen maxima. J Geophys Res 106:22179–22198

    Article  Google Scholar 

  • Mecking S, Langdon C, Feely RA, Sabine CL, Deutsch CA, Min DH (2008) Climate variability in the North Pacific thermocline diagnosed from oxygen measurements: an update based on the U.S. CLIVAR/CO2 repeat hydrography cruises. Glob Biogeochem Cycles 22:GB3015. doi:10.1029/2007GB003101

  • Miyazawa Y, Zhang R, Guo X, Tamura H, Ambe D, Lee JS, Okuno A, Yoshinari H, Setou T, Komatsu K (2009) Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis. J Oceanogr 65:737–756

    Article  Google Scholar 

  • Mizuno K, White WB (1983) Annual and interannual variability in the Kuroshio Current System. J Phys Oceanogr 13:1847–1867

    Article  Google Scholar 

  • Mori K, Uehara K, Kameda T, Kakehi S (2008) Direct measurements of dissipation rate of turbulent kinetic energy of North Pacific subtropical mode water. Geophys Res Lett 35:L05601. doi:10.1029/2007GL032867

    Article  Google Scholar 

  • Nakamura H (1996) A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: Its distribution and formation. J Oceanogr 52:171–188

    Article  Google Scholar 

  • Nishikawa S, Kubokawa A (2007) Mixed layer depth front and subduction of low potential vorticity water in an idealized ocean GCM. J Oceanogr 63:125–134

    Article  Google Scholar 

  • Nishikawa S, Tsujino H, Sakamoto K, Nakano H (2010) Effects of mesoscale eddies on subduction and distribution of subtropical mode water in an eddy-resolving OGCM of the western North Pacific. J Phys Oceanogr 40:1748–1765

    Article  Google Scholar 

  • Nitta T, Yamada S (1989) Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J Meteorol Soc Jpn 67:375–382

    Google Scholar 

  • Nonaka M, Xie SP (2000) Propagation of North Pacific interdecadal subsurface temperature anomalies in an ocean GCM. Geophys Res Lett 27:3747–3750

    Article  Google Scholar 

  • Nonaka M, Nakamura H, Tanimoto Y, Kagimoto T, Sasaki H (2006) Decadal variability in the Kuroshio-Oyashio Extension simulated in an eddy-resolving OGCM. J Clim 19:1970–1989

    Article  Google Scholar 

  • Nonaka M, Xie SP, Sasaki H (2011) Interannual variations in low potential vorticity water and the subtropical countercurrent in an eddy-resolving OGCM. J Oceanogr (this issue)

  • Ohno Y, Kobayashi T, Iwasaka N, Suga T (2004) The mixed layer depth in the North Pacific as detected by the Argo floats. Geophys Res Lett 31:L11306. doi:10.1029/2004GL019576

    Article  Google Scholar 

  • Ohno Y, Iwasaka N, Kobashi F, Sato Y (2009) Mixed layer depth climatology of the North Pacific based on Argo observations. J Oceanogr 65:1–16

    Article  Google Scholar 

  • Oka E (2009) Seasonal and interannual variation of North Pacific subtropical mode water in 2003–2006. J Oceanogr 65:151–164

    Article  Google Scholar 

  • Oka E, Suga T (2003) Formation region of North Pacific subtropical mode water in the late winter of 2003. Geophys Res Lett 30:2205. doi:10.1029/2003GL018581

    Article  Google Scholar 

  • Oka E, Suga T (2005) Differential formation and circulation of North Pacific central mode water. J Phys Oceanogr 35:1997–2011

    Article  Google Scholar 

  • Oka E, Talley LD, Suga T (2007) Temporal variability of winter mixed layer in the mid- to high-latitude North Pacific. J Oceanogr 63:293–307

    Article  Google Scholar 

  • Oka E, Toyama K, Suga T (2009) Subduction of North Pacific central mode water associated with subsurface mesoscale eddy. Geophys Res Lett 36:L08607. doi:10.1029/2009GL037540

    Article  Google Scholar 

  • Oka E, Kouketsu S, Toyama K, Uehara K, Kobayashi T, Hosoda S, Suga T (2011a) Formation and subduction of central mode water based on profiling float data, 2003–08. J Phys Oceanogr 41:113–129

    Article  Google Scholar 

  • Oka E, Suga T, Sukigara C, Toyama K, Shimada K, Yoshida J (2011b) “Eddy-resolving” observation of the North Pacific subtropical mode water. J Phys Oceanogr 41:666–681

    Article  Google Scholar 

  • Ono T, Midorikawa T, Watanabe YW, Tadokoro K, Saino T (2001) Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998. Geophys Res Lett 28:3285–3288

    Article  Google Scholar 

  • Palter JB, Lozier MS, Barber RT (2005) The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature 437:687–692

    Article  Google Scholar 

  • Pan A, Liu Q (2005) Mesoscale eddy effects on the wintertime vertical mixing in the formation region of the North Pacific subtropical mode water. Chin Sci Bull 50:1949–1956

    Article  Google Scholar 

  • Qiu B (1999) Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/POSEIDON observations and theory. J Phys Oceanogr 29:2471–2468

    Google Scholar 

  • Qiu B (2002) The Kuroshio Extension system: its large-scale variability and role in the midlatitude ocean–atmosphere interaction. J Oceanogr 58:57–75

    Article  Google Scholar 

  • Qiu B (2003) Kuroshio Extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. J Phys Oceanogr 33:2465–2482

    Article  Google Scholar 

  • Qiu B, Chen S (2005) Variability of the Kuroshio Extension jet, recirculation gyre and mesoscale eddies on decadal timescales. J Phys Oceanogr 35:2090–2103

    Article  Google Scholar 

  • Qiu B, Chen S (2006) Decadal variability in the formation of the North Pacific subtropical mode water: oceanic versus atmospheric control. J Phys Oceanogr 36:1365–1380

    Article  Google Scholar 

  • Qiu B, Chen S (2010a) Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J Phys Oceanogr 40:2525–2538

    Article  Google Scholar 

  • Qiu B, Chen S (2010b) Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Res II 57:1098–1110

    Article  Google Scholar 

  • Qiu B, Chen S (2011) Effect of decadal Kuroshio Extension jet and eddy variability on the modification of North Pacific intermediate water. J Phys Oceanogr 41:503–515

    Article  Google Scholar 

  • Qiu B, Huang RX (1995) Ventilation of the North Atlantic and North Pacific: subduction versus obduction. J Phys Oceanogr 25:2374–2390

    Article  Google Scholar 

  • Qiu B, Chen S, Hacker P (2004) Synoptic-scale air-sea flux forcing in the western North Pacific: observations and their impact on SST and the mixed layer. J Phys Oceanogr 34:2148–2159

    Article  Google Scholar 

  • Qiu B, Hacker P, Chen S, Donohue KA, Watts DR, Mitsudera H, Hogg NG, Jayne SR (2006) Observations of the subtropical mode water evolution from the Kuroshio Extension System Study. J Phys Oceanogr 36:457–473

    Article  Google Scholar 

  • Qiu B, Chen S, Hacker P (2007) Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System Study (KESS). J Phys Oceanogr 37:982–1000

    Article  Google Scholar 

  • Qu T, Chen J (2009) A North Pacific decadal variability in subduction rate. Geophys Res Lett 36:L22602. doi:10.1029/2009GL040914

    Article  Google Scholar 

  • Qu T, Xie SP, Mitsudera H, Ishida A (2002) Subduction of the North Pacific mode waters in a global high-resolution GCM. J Phys Oceanogr 32:746–763

    Article  Google Scholar 

  • Rainville L, Jayne SR, McClean JL, Maltrud ME (2007) Formation of subtropical mode water in a high-resolution ocean simulation of the Kuroshio Extension region. Ocean Modell 17:338–356

    Article  Google Scholar 

  • Roden GI (1970) Aspects of the mid-Pacific transition zone. J Geophys Res 75:1097–1109

    Article  Google Scholar 

  • Roden GI (1972) Temperature and salinity fronts at the boundaries of the subarctic-subtropical transition zone in the western Pacific. J Geophys Res 77:7175–7187

    Article  Google Scholar 

  • Roemmich D, Boebel O, Desaubies Y, Freeland H, King B, LeTraon PY, Molinari R, Owens WB, Riser S, Send U, Takeuchi K, Wijffels S (2001) Argo: the global array of profiling floats. In: Koblinsky CJ, Smith NR (eds) Observing the oceans in the 21st century. GODAE Project Office, Bureau of Meteorology, Melbourne, pp 248–258

    Google Scholar 

  • Roemmich D, Johnson GC, Riser S, Davis R, Gilson J, Owens WB, Garzoli SL, Schmid C, Ignaszewski M (2009) Argo: the challenge of continuing 10 years of progress. Oceanography 22:46–55

    Article  Google Scholar 

  • Saito H, Suga T, Hanawa K, Watanabe T (2007) New type of pycnostad in the western subtropical-subarctic transition region of the North Pacific: transition region mode water. J Oceanogr 63:589–600

    Article  Google Scholar 

  • Saito H, Suga T, Hanawa K, Shikama N (2011) The transition region mode water of the North Pacific and its rapid modification. J Phys Oceanogr (in press)

  • Sasaki YN, Schneider N, Maximenko N, Lebedev K (2010) Observational evidence for propagation of decadal spiciness anomalies in the North Pacific. Geophys Res Lett 37:L07708. doi:10.1029/2010GL042716

    Article  Google Scholar 

  • Sasaki H, Xie SP, Taguchi B, Nonaka M, Hosoda S, Masumoto Y (2011) Interannual variations of the Hawaiian Lee Countercurrent induced by low potential vorticity water ventilation in the subsurface. J Oceanogr (this issue)

  • Schneider N, Miller AJ, Alexander MA, Deser C (1999) Subduction of decadal North Pacific temperature anomalies: observations and dynamics. J Phys Oceanogr 29:1056–1070

    Article  Google Scholar 

  • Shimada K, Nomoto M, Yoshida J (2007) Distribution of the density ratio in the North Pacific. La Mer 45:149–158

    Google Scholar 

  • Sprintall J, Roemmich D (1999) Characterizing the structure of the surface layer in the Pacific Ocean. J Geophys Res 104:23297–23311

    Article  Google Scholar 

  • Stommel HM (1979) Determination of water mass properties of water pumped down from Ekman layer to the geostrophic flow below. Proc Natl Acad Sci USA 76:3051–3055

    Article  Google Scholar 

  • Stommel H, Schott F (1977) The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep Sea Res 24:325–329

    Article  Google Scholar 

  • Suga T, Hanawa K (1990) The mixed layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of subtropical mode water. J Mar Res 48:543–566

    Google Scholar 

  • Suga T, Hanawa K (1995a) The subtropical mode water circulation in the North Pacific. J Phys Oceanogr 25:958–970

    Article  Google Scholar 

  • Suga T, Hanawa K (1995b) Interannual variations of North Pacific subtropical mode water in the 137°E section. J Phys Oceanogr 25:1012–1017

    Article  Google Scholar 

  • Suga T, Hanawa K (1995c) Subtropical mode water south of Honshu, Japan in the spring of 1988 and 1989. J Oceanogr 51:1–19

    Article  Google Scholar 

  • Suga T, Hanawa K, Toba Y (1989) Subtropical mode water in the 137°E section. J Phys Oceanogr 19:1605–1618

    Article  Google Scholar 

  • Suga T, Takei Y, Hanawa K (1997) Thermostad distribution in the North Pacific subtropical gyre: the central mode water and the subtropical mode water. J Phys Oceanogr 27:140–152

    Article  Google Scholar 

  • Suga T, Kato A, Hanawa K (2000) North Pacific tropical water: its climatology and temporal changes associated with the climate regime shift in the 1970s. Prog Oceanogr 47:223–256

    Article  Google Scholar 

  • Suga T, Motoki K, Hanawa K (2003) Subsurface water masses in the central North Pacific transition region: the repeat section along the 180° meridian. J Oceanogr 59:435–444

    Article  Google Scholar 

  • Suga T, Motoki K, Aoki Y, Macdonald AM (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34:3–22

    Article  Google Scholar 

  • Suga T, Aoki Y, Saito H, Hanawa K (2008) Ventilation of the North Pacific subtropical pycnocline and mode water formation. Prog Oceanogr 77:285–297

    Article  Google Scholar 

  • Suga T, Sato K, Nonaka M, Hosoda S, Ueno H, Shikama N, Kobayashi T, Iwasaka N, Oka E (2011) A revisit to causes of the North Pacific central mode water property changes associated with regime shifts. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of the OceanObs’09: sustained ocean observations and information for society (Annex), 21–25 September 2009. ESA Publication WPP-306, Venice, Italy (in press)

  • Sugimoto S, Hanawa K (2005a) Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific. Geophys Res Lett 32:L01606. doi:10.1029/2004GL021410

    Article  Google Scholar 

  • Sugimoto S, Hanawa K (2005b) Why does reemergence of winter sea surface temperature anomalies not occur in eastern mode water areas? Geophys Res Lett 32:L15608. doi:10.1029/2005GL022968

    Article  Google Scholar 

  • Sugimoto S, Hanawa K (2007) Further evidence for nonreemergence of winter SST anomalies in the North Pacific eastern subtropical mode water area. J Oceanogr 63:625–635

    Article  Google Scholar 

  • Sugimoto S, Hanawa K (2010) Impact of Aleutian Low activity on the STMW formation in the Kuroshio recirculation gyre region. Geophys Res Lett 37:L03606. doi:10.1029/2009GL041795

    Article  Google Scholar 

  • Sukigara C, Suga T, Saino T, Toyama K, Yanagimoto D, Hanawa K, Shikama N (2011) Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pacific. J Oceanogr 67:77–85

    Article  Google Scholar 

  • Taguchi B, Xie SP, Schneider N, Nonaka M, Sasaki H, Sasai Y (2007) Decadal variability of the Kuroshio Extension: observations and an eddy-resolving model hindcast. J Clim 20:2357–2377

    Article  Google Scholar 

  • Takikawa T, Ichikawa H, Ichikawa K, Kawae S (2005) Extraordinary subsurface mesoscale eddy detected in the southeast of Okinawa in February 2002. Geophys Res Lett 32:L17602. doi:10.1029/2005GL023842

    Article  Google Scholar 

  • Talley LD (1988) Potential vorticity distribution in the North Pacific. J Phys Oceanogr 18:89–106

    Article  Google Scholar 

  • Taneda T, Suga T, Hanawa K (2000) Subtropical mode water variation in the southwestern part of the North Pacific subtropical gyre. J Geophys Res 105:19591–19598

    Article  Google Scholar 

  • Tanimoto Y, Iwasaka N, Hanawa K, Toba Y (1993) Characteristic variations of sea surface temperature with multiple time scales in the North Pacific. J Clim 6:1153–1160

    Article  Google Scholar 

  • Toba Y, Kawamura H, Hanawa K, Otobe H, Taira K (1991) Outbreak of warm water from the Kuroshio south of Japan—a combined analysis of satellite and OMLET oceanographic data. J Oceanogr Soc Jpn 47:297–303

    Article  Google Scholar 

  • Tomita H, Kako S, Cronin MF, Kubota M (2010) Preconditioning of the wintertime mixed layer at the Kuroshio Extension Observatory. J Geophys Res 115:C12053. doi:10.1029/2010JC006373

    Article  Google Scholar 

  • Tomosada A (1986) Generation and decay of Kuroshio warm-core rings. Deep Sea Res 33:1475–1486

    Article  Google Scholar 

  • Toyama K, Suga T (2010) Vertical structure of North Pacific mode waters. Deep Sea Res II 57:1152–1160

    Article  Google Scholar 

  • Toyama K, Suga T (2011) Roles of mode waters in formation and maintenance of central water in the North Pacific. J Oceanogr (this issue)

  • Toyoda T, Awaji T, Ishikawa Y, Nakamura T (2004) Preconditioning of winter mixed layer in the formation of North Pacific eastern subtropical mode water. Geophys Res Lett 31:L17206. doi:10.1029/2004GL020677

    Article  Google Scholar 

  • Toyoda T, Awaji T, Masuda S, Sugiura N, Igarashi H, Mochizuki T, Ishikawa Y (2011) Interannual variability of North Pacific eastern subtropical mode water formation in the 1990s derived from a 4-dimensional variational ocean data assimilation experiment. Dyn Atmos Oceans 51:1–25

    Article  Google Scholar 

  • Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Am Meteorol Soc 71:988–993

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphereocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Tsujino H, Yasuda T (2004) Formation and circulation of mode waters of the North Pacific in a high-resolution GCM. J Phys Oceanogr 34:399–415

    Article  Google Scholar 

  • Uda M (1963) Oceanography of the subarctic Pacific Ocean. J Fish Res Board Can 20:119–179

    Article  Google Scholar 

  • Uda M, Hasunuma K (1969) The eastward subtropical countercurrent in the western North Pacific Ocean. J Oceanogr Soc Jpn 25:201–210

    Google Scholar 

  • Uehara H, Suga T, Hanawa K, Shikama N (2003) A role of eddies in formation and transport of North Pacific subtropical mode water. Geophys Res Lett 30:1705. doi:10.1029/2003GL017542

    Article  Google Scholar 

  • Watanabe YW, Ono T, Shimamoto A, Sugimoto T, Wakita M, Watanabe S (2001) Probability of a reduction in the formation rate of the subsurface water in the North Pacific during the 1980s and 1990s. Geophys Res Lett 28:3289–3292

    Article  Google Scholar 

  • Williams RG (1989) The influence of air–sea interaction on the ventilated thermocline. J Phys Oceanogr 19:1255–1267

    Article  Google Scholar 

  • Williams RG (1991) The role of the mixed layer in setting the potential vorticity of the main thermocline. J Phys Oceanogr 21:1803–1814

    Article  Google Scholar 

  • Xie SP, Kunitani T, Kubokawa A, Nonaka M, Hosoda S (2000) Interdecadal thermocline variability in the North Pacific for 1958–97: a GCM simulation. J Phys Oceanogr 30:2798–2813

    Article  Google Scholar 

  • Xie SP, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986

    Article  Google Scholar 

  • Xie SP, Xu LX, Liu Q, Kobashi F (2011) Dynamical role of mode-water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J Clim 24:1212–1225

    Article  Google Scholar 

  • Xu LX, Xie SP, Liu Q, Kobashi F (2011) Response of the North Pacific Subtropical Countercurrent and its variability to global warming. J Oceanogr (this issue)

  • Yamanaka G, Ishizaki H, Hirabara M, Ishikawa I (2008) Decadal variability of the Subtropical Front of the western North Pacific in an eddy-resolving ocean general circulation model. J Geophys Res. 113:C12027. doi:10.1029/2008JC005002

  • Yasuda I (2003) Hydrographic structure and variability of the Kuroshio-Oyashio transition area. J Oceanogr 59:389–402

    Article  Google Scholar 

  • Yasuda T, Hanawa K (1997) Decadal changes in the mode waters in the midlatitude North Pacific. J Phys Oceanogr 27:858–870

    Article  Google Scholar 

  • Yasuda T, Hanawa K (1999) Composite analysis of North Pacific subtropical mode water properties with respect to the strength of the wintertime East Asian monsoon. J Oceanogr 55:531–541

    Article  Google Scholar 

  • Yasuda T, Kitamura Y (2003) Long-term variability of North Pacific subtropical mode water in response to spin-up of the subtropical gyre. J Oceanogr 59:279–290

    Article  Google Scholar 

  • Yasuda I, Okuda K, Hirai M (1992) Evolution of a Kuroshio warm-core ring—variability of the hydrographic structure. Deep Sea Res 39:S131–S161

    Article  Google Scholar 

  • Yoshida S (1964) A note on the variations of the Kuroshio during recent years. Bull Jpn Soc Fish Oceanogr 5:66–69 (in Japanese)

    Google Scholar 

  • Yoshida T, Hoshimoto M (2006) Heat content change in the surface isothermal layer of a warm core ring in the sea east of Japan. J Oceanogr 62:283–287

    Article  Google Scholar 

  • Yuan X, Talley LD (1996) The subarctic frontal zone in the North Pacific: characteristics of frontal structure from climatological data and synoptic surveys. J Geophys Res 101:16491–16508

    Article  Google Scholar 

  • Zhang Y (1996) An observational study of atmosphere–ocean interaction in the northern oceans on interannual and interdecadal time-scales. Ph.D. dissertation, University of Washington, Seattle, WA

  • Zhang RX, Hanawa K (1993) Features of the water-mass front in the northwestern North Pacific. J Geophys Res 98:967–975

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Atsushi Kubokawa for the opportunity to write this review and two anonymous reviewers for helpful comments on the manuscript. This review is based on discussions by the authors in summer 2010 when EO visited the University of Hawaii at Manoa for 1 month under the Overseas Internship Program for Outstanding Young Earth and Planetary Researchers provided by the Department of Earth and Planetary Science, the University of Tokyo. EO is also supported by the Japan Society for Promotion of Science [KAKENHI, Grant-in-Aid for Scientific Research (B), no. 21340133] and the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT; Grant-in-Aid for Scientific Research on Innovative Areas under grant no. 22106007). BQ is supported by NSF through grant OCE-0926594 and NASA through contract 1207881 as part of NASA’s Ocean Surface Topography Mission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eitarou Oka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oka, E., Qiu, B. Progress of North Pacific mode water research in the past decade. J Oceanogr 68, 5–20 (2012). https://doi.org/10.1007/s10872-011-0032-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-011-0032-5

Keywords

Navigation