Skip to main content
Log in

Empirical Formula of Lattice Constant and Tolerance Factors of A2BSbO7 (A3+ = Y, Dy, Gd, Bi; B3+ = Fe, Ga) Pyrochlore Solid Solution

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

In this work, we apply the concept of tolerance factors (t) to pyrochlore solid solution, particularly when the B-site contains two different ions with different masses (as well as charge states) in the formula unit \({A}_{2}^{3+}{B}^{3+}{B}^{{{\prime}}5+}{O}_{7}\) as in the present sample of A2BSbO7 (A3+ = Y, Dy, Gd, Bi; B3+ = Fe, Ga). We examine the previous tolerance factor and proposed a model of lattice constant (a) that depends only on the ionic radii RA, RB (= \(\frac{R\left(Fe\right)+R(Sb)}{2}\) or \(\frac{R\left(Ga\right)+R(Sb)}{2}\)) and RO. Then we proposed an empirical tolerance factor (t), that depends only on the \({R}_{A},{R}_{B}\,{\mathrm{ and }\,R}_{O}\) of the constituent atoms. We discuss the structural stability field and property features of mixed pyrochlore oxide compounds before measuring their structural data as for the case of perovskites.

Graphical abstract

In the present work, we have proposed the empirical formula of lattice constant of A2BSbO7 (A3+ = Y, Dy, Gd, Bi; B3+ = Fe, Ga) of formula unit \({A}_{2}^{3+}{B}^{3+}{B}^{{{\prime}}5+}{O}_{7}\) and hence find the tolerance factor, which predict the structural stability field and property features of mixed pyrochlore oxide compounds before measuring their structural data as for the case of perovskites. Caption: Errors (in %) between the calculated and experimental lattice constants. In the above figure, we shown that the errors (%) between the calculated and experimental lattice constants found from empirical lattice formula a = \(\frac{8}{\sqrt{3}}\left[1.4474357143\left({R}_{A}+{R}_{O}\right)-0.42931\frac{{\left({R}_{A}+{R}_{O}\right)}^{2}}{({R}_{B}+{R}_{O})}\right]\) and Rietveld analysis of powder diffraction data respectively. The error of predicting for the lattice constant by Brik and Srivastava (J Am Ceram Soc 95:1454–1460, 2012) is moderately higher than the error (≤ 0.523%) obtains by our model for mixed pyrochlore oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

We previously synthesized few iron-antimonate pyrochlores A2BSbO7 (A3+ = Y, Dy, Gd, Bi; B3+ = Fe, Ga) by the solid-state reaction method. Then we characterized through powder X-ray diffraction and its Rietveld analysis, SEM-EDAX, FTIR and Fe57 M \(\ddot{o}\) ssbauer spectroscopy [19]. The ionic radius of RA, RB, Sb and O are publicly available in the database of ionic radius, as part of the record: Acta Cryst. A32 751–767 (1976). Remaining parts of the Raw and Rietveld analysis datasets can be accessed on request from Dr. Yatramoham Jana, corresponding author of our previous papers [19, 20, 24]. All calculations and figures were done by using the publicly available Microsoft Excel office 2019 and Origin Pro 8 respectively. This paper is intended to serve as a reference for calculating lattice constant and tolerance factor of mixed pyrochlore, particularly when the B-site contains two different ions having different mass (and also charge state) in the formula unit \({A}_{2}^{3+}{B}^{3+}{B}^{{{\prime}}5+}{O}_{7}\).

References

  1. Subramanian MA, Aravamudan G, SubbaRao GV (1983) Prog Solid St Chem 15:55

    Article  CAS  Google Scholar 

  2. Subramanian MA, Sleight AW (2016) Rare earth pyrochlores (Chap. 107). In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 16. Elsevier, Amsterdam, pp 225–247

    Google Scholar 

  3. Knop O, Demazeau G, Hagenmuller P (1980) Can J Chem 58:2221 (and references therein)

    Article  CAS  Google Scholar 

  4. Zurmuhlen R, Petzelt J, Kamba S, Voitsekhovskii VV, Colla E, Setter N (1995) J Appl Phys 77:5341

    Article  Google Scholar 

  5. Song Z, Liu Q (2020) Inorg Chem Front 7:1583–1590

    Article  CAS  Google Scholar 

  6. Fuentes AF, Montemayor SM, Maczka M, Lang M, Ewing RC, Amador U (2018) Inorg Chem 57(19):12093–12105

    Article  CAS  Google Scholar 

  7. Petzelt J, Zurmuhlen R, Bell A, Kamba S, Kozlov GV, Volkov AA, Setter N (1992) Ferroelectrics 133:205–210

    Article  CAS  Google Scholar 

  8. Zurmuhlen R, Colla E, Dube DC (1994) J Appl Phys 76:5864–5873

    Article  Google Scholar 

  9. Goldschmidt VM (1926) Diegesetze der krystallochemie. Naturwissenschaften 14:477–485

    Article  CAS  Google Scholar 

  10. Zhang H, Li N, Li K, Xue D (2007) Acta Crystallogr B 63:812–818

    Article  CAS  Google Scholar 

  11. Li W, Ionescu E, Riedel R, Gurlo A (2013) J Mater Chem A 1:12239–12245

    Article  CAS  Google Scholar 

  12. Travis W, Glover ENK, Bronstein H, Scanlon DO, Palgrave RG (2016) Chem Sci 7:4548–4556

    Article  CAS  Google Scholar 

  13. Sun Q, Yin W-J (2017) J Am Chem Soc 139:14905–14908

    Article  CAS  Google Scholar 

  14. Becker M, Klüner T, Wark M (2017) Dalton Trans 46:3500–3509

    Article  CAS  Google Scholar 

  15. Bartel CJ, Sutton C, Goldsmith BR, Ouyang R, Musgrave CB, Ghiringhelli LM, Scheffler M (2019) Sci Adv 5:693

    Article  Google Scholar 

  16. Isupov VA (1958) Kristallografiya 3:99–100

    CAS  Google Scholar 

  17. Cai L, Arias AL, Nino JC (2011) J Mater Chem 21:3611–3618

    Article  CAS  Google Scholar 

  18. Mouta R, Silva RX, Paschoal CWA (2013) Acta Cryst B69:439–445

    Google Scholar 

  19. Jana YM, Halder P, Ali Biswas A, Roychowdhury A, Das D, Dey S, Kumar S (2016) J Alloys Compd 656:226

    Article  CAS  Google Scholar 

  20. Nandi S, Jana YM, Sarkar S, Jana R, Mukherjee GD, Gupta HC (2019) J Alloys Compd 771:89–99

    Article  CAS  Google Scholar 

  21. Nikiforov LG (1972) Kristallografiya 17:408

    CAS  Google Scholar 

  22. Brown ID (2006) The chemical bond in inorganic chemistry. Oxford University Press, Oxford

    Book  Google Scholar 

  23. Brik MG, Srivastava AM (2012) J Am Ceram Soc 95:1454–1460

    Article  CAS  Google Scholar 

  24. Jana YM, Halder P, Ali Biswas A, Jana R, Mukherjee GD (2016) Vib Spectrosc 84:74–82

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Halder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S.N., Halder, P. Empirical Formula of Lattice Constant and Tolerance Factors of A2BSbO7 (A3+ = Y, Dy, Gd, Bi; B3+ = Fe, Ga) Pyrochlore Solid Solution. J Chem Crystallogr 52, 371–377 (2022). https://doi.org/10.1007/s10870-022-00934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00934-4

Keywords

Navigation