Skip to main content

Advertisement

Log in

Trimolecular Co-crystals of Ciprofloxacin, p-Coumaric Acid, and Benzoic Acid or Salicylic Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Molecular salts formation is a simple and widely used approach to alter the physicochemical properties of active pharmaceutical ingredients, such as ciprofloxacin (CP), without modifying their chemical structures. In the current work, two co-crystals of p-coumaric acid (PCMA) and organic salts of CP cation (CPH) were prepared and characterized in solid state by X-ray diffraction and by NMR spectroscopy in solution. The two organic salts are CPH:benzoate anion (CPH:BA) and CPH:salicylate anion (CPH:SA). To our knowledge, these are the first two examples of co-crystals of CPH organic salt and a different organic acid. In the two co-crystals (CPH:BA:PCMA and CPH:SA:PCMA), the anion (BA or SA) connects the PCMA molecules and the CPH via O–H∙∙∙O and N–H∙∙∙O hydrogen bonding interactions. The ratio between the three crystalline species in the two co-crystals (CPH:BA:PCMA and CPH:SA:PCMA) is (1:1:1), the ratio was confirmed in solution by NMR spectroscopy.

Graphical Abstract

Co-Crystals of ciprofloxacinuim cation salts of salicylate or benzoate anions and p-coumaric acid have been studied in solution using NMR spectroscopy and in solid state using X-ray crystallography

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The crystallographic data including CIF and fcf files have been deposited into Cambridge Crystallographic Data Centre. CCDC 2044467 and 2044468 contain the crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

References

  1. Pham TDM, Ziora ZM, Blaskovich MAT (2019) Quinolone antibiotics. Medchemcomm 10:1719–1739

    Article  CAS  Google Scholar 

  2. Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochemistry 53:1565–1574

    Article  CAS  Google Scholar 

  3. Troughton JA, Millar G, Smyth ETM, Doherty L, McMullan R (2011) Ciprofloxacin use and susceptibility of Gram-negative organisms to quinolone and non-quinolone antibiotics. J Antimicrob Chemother 66:2152–2158

    Article  CAS  Google Scholar 

  4. El Solh AA, Alhajhusain A (2009) Update on the treatment of Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother 64:229–238

    Article  CAS  Google Scholar 

  5. Davis R, Markham A, Balfour JA (1996) Ciprofloxacin—an updated review of its pharmacology, therapeutic efficacy and tolerability. Drugs 51:1019–1074

    Article  CAS  Google Scholar 

  6. Ross DL, Riley CM (1990) Aqueous solubilities of some variously substituted quinolone antimicrobials. Int J Pharm 63:237–250

    Article  CAS  Google Scholar 

  7. Surov AO, Manin AN, Voronin AP, Drozd KV, Simagina AA, Churakov AV, Perlovich GL (2015) Pharmaceutical salts of ciprofloxacin with dicarboxylic acids. Eur J Pharm Sci 77:112–121

    Article  CAS  Google Scholar 

  8. Surov AO, Vasilev NA, Churakov AV, Stroh J, Emmerling F, Perlovich GL (2019) Solid forms of ciprofloxacin salicylate: polymorphism, formation pathways, and thermodynamic stability. Cryst Growth Des 19:2979–2990

    Article  CAS  Google Scholar 

  9. Florindo C, Costa A, Matos C, Nunes SL, Matias AN, Duarte CMM, Rebelo LPN, Branco LC, Marrucho IM (2014) Novel organic salts based on fluoroquinolone drugs: synthesis, bioavailability and toxicological profiles. Int J Pharm 469:179–189

    Article  CAS  Google Scholar 

  10. Romanuk CB, Manzo RH, Linck YG, Chattah AK, Monti GA, Olivera ME (2009) Characterization of the solubility and solid-state properties of saccharin salts of fluoroquinolones. J Pharm Sci 98:3788–3801

    Article  CAS  Google Scholar 

  11. Basavoju S, Bostrom D, Velaga SP (2012) Pharmaceutical salts of fluoroquinolone antibacterial drugs with acesulfame sweetener. Mol Cryst Liq Cryst 562:254–264

    Article  CAS  Google Scholar 

  12. El-Sabawi D, Abu-Dahab R, Al Bakri AG, Hamdan II (2019) Studies on the interaction between ciprofloxacin hydrochloride and diclofenac sodium. Trop J Pharm Res 18:377–384

    Article  CAS  Google Scholar 

  13. Surov AO, Voronin AP, Drozd KV, Churakov AV, Roussel P, Perlovich GL (2018) Diversity of crystal structures and physicochemical properties of ciprofloxacin and norfloxacin salts with fumaric acid. CrystEngComm 20:755–767

    Article  CAS  Google Scholar 

  14. Hamdan II, El-Sabawi D, Darwish R, Dahabiyeh LA (2021) Preparation, characterization and antimicrobial assessment of selected ciprofloxacin salts. Acta Pharm 71:365–382

    Article  CAS  Google Scholar 

  15. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27–10–2011 CrysAlis171.NET)

  16. CrystalClear-SM Expert 2.1 b46 (Rigaku, 2016)

  17. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  18. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  19. Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JA, Puschmann H (2015) The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment–Olex2 dissected. Acta Crystallogr A: Found Adv 71:59–75

    Article  CAS  Google Scholar 

  20. Torniainen K, Tammilehto S, Ulvi V (1996) The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin. Int J Pharm 132:53–61

    Article  CAS  Google Scholar 

  21. Benvidi A, Dadras A, Abbasi S, Tezerjani MD, Rezaeinasab M, Tabaraki R, Namazian M (2019) Experimental and computational study of the pKa of coumaric acid derivatives. J Chin Cheml Soc 66:589–593

    Article  CAS  Google Scholar 

  22. Hill T, Erasmus RM, Levendis DC, Lemmerer A (2019) Combining two distinctive intermolecular forces in designing ternary co-crystals and molecular salts of 1, 3, 5-trinitrobenzene, 9-anthracenecarboxylic acid and ten substituted pyridines. CrystEngComm 21:5206–5210

    Article  CAS  Google Scholar 

  23. Kavuru P, Aboarayes D, Arora KK, Clarke HD, Kennedy A, Marshall L, Ong TT, Perman J, Pujari T, Wojtas Ł (2010) Hierarchy of supramolecular synthons: persistent hydrogen bonds between carboxylates and weakly acidic hydroxyl moieties in cocrystals of zwitterions. Crys Growth & Des 10:3568–3584

    Article  CAS  Google Scholar 

  24. Surov AO, Vasilev NA, Churakov AV, Stroh J, Emmerling F, Perlovich GL (2019) Solid forms of ciprofloxacin salicylate: polymorphism, pormation pathways, and thermodynamic stability. Cryst Growth Des 19:2979–2990

    Article  CAS  Google Scholar 

  25. Turel I, Bukovec P, Quirós M (1997) Crystal structure of ciprofloxacin hexahydrate and its characterization. Inter J Pharm 152:59–65

    Article  CAS  Google Scholar 

  26. Fabbiani FP, Dittrich B (2008) Redetermination and invariom refinement of 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-4-ium-1-yl)-1, 4-dihydroquinoline-3-carboxylate hexahydrate at 120 K. Acta Cryst E: Struc Rep Online 64:o2354–o2355

    Article  CAS  Google Scholar 

  27. Woińska M, Grabowsky S, Dominiak PM, Woźniak K, Jayatilaka D (2016) Hydrogen atoms can be located accurately and precisely by x-ray crystallography. Sci Adv 2:e1600192

    Article  CAS  Google Scholar 

  28. Fabbiani FP, Dittrich B, Florence AJ, Gelbrich T, Hursthouse MB, Kuhs WF, Shankland N, Sowa H (2009) Crystal structures with a challenge: high-pressure crystallisation of ciprofloxacin sodium salts and their recovery to ambient pressure. CrystEngComm 11:1396–1406

    Article  CAS  Google Scholar 

  29. Adonin SA, Gorokh ID, Samsonenko DG, Novikov AS, Korolkov IV, Plyusnin PE, Sokolov MN, Fedin VP (2019) Binuclear and polymeric bromobismuthate complexes: crystal structures and thermal stability. Polyhedron 159:318–322

    Article  CAS  Google Scholar 

  30. Kahouli K, Hajji R, Abdelbaky MS, García-Granda S, Chaabouni S (2019) Structural characterization, Hirshfeld surface analysis, vibrational (FT-IR and Raman) and optical properties of the tris (4-Bromo-N, N-dimethylanilinium) hexachlorobismuthate (III). J Mol Struct 1195:641–652

    Article  CAS  Google Scholar 

  31. Adonin SA, Gorokh ID, Novikov AS, Samsonenko DG, Korolkov IV, Sokolov MN, Fedin VP (2018) Bromobismuthates: cation-induced structural diversity and Hirshfeld surface analysis of cation–anion contacts. Polyhedron 139:282–288

    Article  CAS  Google Scholar 

  32. Kahouli K, Khirouni K, Chaabouni S (2020) Crystal structure, thermal studies, vibrational properties, atomic Hirshfeld surface, and electrical and dielectric studies of [C9H14N] 3BiCl6 single crystal. Journal of Molecular Structure 1199:126944

    Article  CAS  Google Scholar 

  33. Adonin SA, Gorokh ID, Novikov AS, Usoltsev AN, Sokolov MN, Fedin VP (2019) Tetranuclear anionic bromobismuthate [Bi4Br 18] 6−: new structural type in halometalate collection. Inorg Chem Commun 103:72–74

    Article  CAS  Google Scholar 

  34. Nugrahani I, Tjengal B, Gusdinar T, Horikawa A, Uekusa H (2020) A comprehensive study of a new 1.75 hydrate of ciprofloxacin salicylate: SCXRD structure determination, solid characterization, water stability, solubility, and dissolution study. Crystals 10(5):349

    Article  CAS  Google Scholar 

  35. Nagalapalli R, YagaBheem S (2014) Synthesis, crystal structure, and Hirshfeld surface analysis of ciprofloxacin-salicylic acid molecular salt. J Cryst 2014:1–5

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Deanship of Scientific Research at The University of Jordan for financial support (Grant recommendation No. 27/2014-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas F. Awwadi.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awwadi, F.F., Dahabiyeh, L.A. & Hamdan, I.I. Trimolecular Co-crystals of Ciprofloxacin, p-Coumaric Acid, and Benzoic Acid or Salicylic Acid. J Chem Crystallogr 52, 304–314 (2022). https://doi.org/10.1007/s10870-022-00925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00925-5

Keywords

Navigation