Skip to main content
Log in

Synthesis, Spectroscopy and Crystal Structure Analysis of N1,N3-dicyclohexyl-N1-(all-trans-retinoyl)urea

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The title compound, C33H50N2O2, is a side product in the reaction of all-trans-retinoic acid (atRA) with N-hydroxysuccinimide, in the presence of the coupling agent N,N′-dicyclohexylcarbodiimide, which produces the ‘active’ ester succinimidyl all-trans-retinoate as the product. It crystallizes in the orthorhombic Pbca space group. The compound was characterized by 1H-NMR, 13C-NMR, ESI–MS and IR spectroscopy and its structure was determined by single-crystal X-ray diffraction. For example in the 13C-NMR spectrum, diagnostic peaks are those of the two amide carbonyl C atoms at δ 169.5 and 154.2 ppm, the ten olefinic C atoms of the unsaturated chain of atRA moiety at δ 149.0, 139.3, 137.7, 137.3, 134.9, 130.2, 130.0, 129.4, 128.5 and 121.5 ppm and the two methine C atoms of the N,N′-dicyclohexylurea moiety at δ 57.9 and 49.5 ppm. Detailed analysis of its molecular and supramolecular structure showed that close-packing principles (elongated shape/large hydrophobic region of the molecule) together with chemical factors (N–H⋯O and C–H⋯O intermolecular interactions) direct the 3D self-assembly process in the crystalline state. Hirshfeld surface analysis was employed, a powerful approach to quickly and easily gain insight into molecular environments in the crystalline state.

Graphical Abstract

The synthesis and X-ray structure of 1-((2E, 4E, 6E, 8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-enyl)nona-2,4,6,8-tetraenoyl)-1,3-dicyclohexylurea, a side product in the synthesis of succinimidyl all-trans-retinoate, is reported; Hirshfeld surface analysis was employed to identify intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Sporn HB, Roberts AB, Goodman DS (eds) (1994) The retinoids: biology, chemistry and medicine, 2nd edn. Raven Press, New York

    Google Scholar 

  2. Karigiannis G, Papaioannou D (2000) Structure, biological activity and synthesis of polyamine analogues and conjugates. Eur J Org Chem. https://doi.org/10.1002/(SICI)1099-0690(200005)2000:10%3c1841::AID-EJOC1841%3e3.0.CO;2-9

    Article  Google Scholar 

  3. Magoulas G, Papaioannou D, Papadimou E, Drainas D (2009) Preparation of spermine conjugates with acidic retinoids with potent ribonuclease P inhibitory activity. Eur J Med Chem 44:2689–2695. https://doi.org/10.1016/j.ejmech.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  4. Papaioannou D, Drainas D, Tsambaos D (2004) Polyamine conjugates with acidic retinoids and preparation thereof. WO 2004/018001 A1; EP 1 569 694 B1; US 7,517,913 B2

  5. Vourtsis D, Lamprou M, Sadikoglou E, Giannou A, Theodorakopoulou O, Sarrou E, Magoulas GE, Bariamis SE, Athanassopoulos CM, Drainas D, Papaioannou D, Papadimitriou E (2013) Effect of an all-trans-retinoic acid conjugate with spermine on viability of human prostate cancer and endothelial cells in vitro and angiogenesis in vivo. Eur J Pharmacol 698:122–130. https://doi.org/10.1016/j.ejphar.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  6. Grafanaki K, Skeparnias I, Kontos C, Anastasakis D, Kyriakopoulos G, Korfiati A, Theofilatos K, Mavroudi S, Magoulas G, Papaioannou D, Scorilas A, Stathopoulos C, Drainas D (2021) Pharmacoepigenomics circuits induced by a novel retinoid-polyamine conjugate in human immortalized keratinocytes. Pharmacogenom J. https://doi.org/10.1038/s41397-021-00241-9

    Article  Google Scholar 

  7. Hadjipavlou-Litina D, Magoulas GE, Bariamis SE, Drainas D, Avgoustakis K, Papaioannou D (2010) Does conjugation of antioxidants improve their antioxidative/anti-inflammatory potential? Bioorg Μed Chem 18:8204–8217. https://doi.org/10.1016/j.bmc.2010.10.012

    Article  CAS  Google Scholar 

  8. Petridis T, Giannakopoulou D, Stamatopoulou V, Grafanaki K, Kostopoulos CG, Papadaki H, Malavaki CJ, Karamanos NK, Douroumi S, Papachristou D, Magoulas GE, Papaioannou D, Drainas D (2016) Investigation on toxicity and teratogenicity in rats of a retinoid-polyamine conjugate with potent anti-inflammatory properties. Birth Def Res B 107:32–44. https://doi.org/10.1002/bdrb.21170

    Article  CAS  Google Scholar 

  9. Garnelis T, Athanassopoulos CM, Papaioannou D, Eggleston IM, Fairlamb AH (2005) Very short and efficient syntheses of the spermine alkaloid kukoamine A and analogs using isolable succinimidyl cinnamates. Chem Lett 34:264–265. https://doi.org/10.1246/cl.2005.264

    Article  CAS  Google Scholar 

  10. Ramazania A, Nasrabadi FZ, Rezaei A, Rouhani M, Ahankar H, Asiabi PA, Joo SW, Ślepokura K, Lis T (2015) Synthesis of N-acylurea derivatives from carboxylic acids and N, N′-dialkyl carbodiimides in water. J Chem Sci 127:2269–2282. https://doi.org/10.1007/s12039-015-0988-6

    Article  CAS  Google Scholar 

  11. Rigaku Oxford Diffraction (2020) CrysAlis (version 1.171.41.93a). Rigaku Oxford diffraction

  12. Sheldrick GM (2015) SHELX—integrated space-group and crystal-structure determination. Acta Cryst A71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  13. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  14. Spek AL (2009) Structure validation in chemical crystallography. Acta Cryst D65:148–155. https://doi.org/10.1107/S090744490804362X

    Article  CAS  Google Scholar 

  15. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  16. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Cryst 45:849–854. https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  17. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M, Wood PA (2020) Mercury 4.0: from visualization to analysis, design and prediction. J Appl Cryst 53:226–235. https://doi.org/10.1107/S1600576719014092

    Article  CAS  Google Scholar 

  18. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal Explorer 3.1, University of Western Australia, Perth, Australia

  19. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76. https://doi.org/10.1002/1521-3773(20020104)41:1

    Article  CAS  Google Scholar 

  20. Desiraju GR (2013) Crystal engineering: from molecule to crystal. J Am Chem Soc 135:9952–9967. https://doi.org/10.1021/ja403264c

    Article  CAS  PubMed  Google Scholar 

  21. van den Berg JA, Seddon KR (2003) Critical evaluation of C−H⋯X hydrogen bonding in the crystalline state. Cryst Growth Des 3:643–661. https://doi.org/10.1021/cg034083h

    Article  CAS  Google Scholar 

  22. Nishio M (2004) CH/π-hydrogen bonds in crystals. CrystEngComm 6:130–158. https://doi.org/10.1002/chin.200441276

    Article  CAS  Google Scholar 

  23. Janiak C (2000) A critical account on π−π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans. https://doi.org/10.1039/b003010o

    Article  Google Scholar 

  24. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601. https://doi.org/10.1021/acs.chemrev.5b00484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press

    Google Scholar 

  26. Desiraju GR (2007) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35:565–573. https://doi.org/10.1021/ar010054t

    Article  CAS  Google Scholar 

  27. Desiraju GR (2007) Crystal engineering: a holistic view. Angew Chem Int Ed 46:8342–8356. https://doi.org/10.1002/anie.200700534

    Article  CAS  Google Scholar 

  28. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press

    Google Scholar 

  29. Haffez H, Chisholm DR, Valentine R, Pohl Ε, Redfern C, Whiting A (2017) The molecular basis of the interactions between synthetic retinoic acid analogues and the retinoic acid receptors. MedChemComm 8:578–592. https://doi.org/10.1039/c6md00680a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Magoulas GE, Bariamis SE, Athanassopoulos CM, Haskopoulos A, Dedes PG, Krokidis MG, Karamanos NK, Kletsas D, Papaioannou D, Maroulis G (2011) Syntheses, antiproliferative activity and theoretical characterization of acitretin-type retinoids with changes in the lipophilic part. Eur J Med Chem 46:721–737. https://doi.org/10.1016/j.ejmech.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  31. Stam CH, Macgillavry CH (1963) The crystal structure of the triclinic modification of vitamin A acid. Acta Cryst 16:62–68. https://doi.org/10.1107/S0365110X63000104

    Article  CAS  Google Scholar 

  32. Klaholz BP, Moras D (1998) A structural view of ligand binding to the retinoid receptors. Pure Appl Chem 70:41–47. https://doi.org/10.1351/pac199870010041

    Article  CAS  Google Scholar 

  33. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392. https://doi.org/10.1039/b203191b

    Article  CAS  Google Scholar 

  34. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. https://doi.org/10.1039/b818330a

    Article  CAS  Google Scholar 

  35. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Cryst 54:1006–1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. A. Panagiotou and Prof. A. Tasiopoulos (Department of Chemistry, University of Cyprus) for the collection of the diffraction data and the Laboratory of Instrumental Analysis (University of Patras) for the NMR spectra and the Elemental Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Nastopoulos.

Ethics declarations

Conflict of interest

All authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vachlioti, E., Kalantzi, S., Papaioannou, D. et al. Synthesis, Spectroscopy and Crystal Structure Analysis of N1,N3-dicyclohexyl-N1-(all-trans-retinoyl)urea. J Chem Crystallogr 52, 260–269 (2022). https://doi.org/10.1007/s10870-021-00917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00917-x

Keywords

Navigation