Skip to main content
Log in

Quantum Chemical Calculations (Ab Initio & DFT), Hirshfeld Surface Analysis, Crystal Structure and Molecular Docking Study of 2-Chloro-4-(4-fluoro-phenyl)-6-isopropyl-pyrimidine-5-carboxylic Acid Methyl Ester

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Pyrimidine derivatives are well-known nitrogen containing heterocyclic compound which play an important role in medicinal and pharmaceutical applications. The synthesized compound, 2-chloro-4-(4-fluoro-phenyl)-6-isopropyl-pyrimidine-5-carboxylic acid methyl ester has been confirmed by single crystal X-ray diffraction studies. Title compound crystallizes in monoclinic space group P21/c with a = 8.5272(11) Å, b = 17.774(2) Å, c = 10.2732(14) Å, β = 111.005(2)° and Z = 4. The number of weak but significant C–H···O, C–H···N, C–F···π and ππ interactions take part, in the stability of the crystal packing and also the quantitative contributions of these interactions towards the crystal packing are investigated by Hirshfeld surface analysis. A static disorders have been observed in isopropyl substituent group of atoms C20 and C21 due to anisotropic thermal motion. Ab-initio and Density Functional Theory (DFT) calculations have been carried out for the title molecule using RHF/6-311G and B3LYP/6-311G basis set respectively without polarization function, predicting the optimized geometry which can well reproduce structural parameters. Mullikan charge distributions conforms the role of specific atom especially the donor/acceptor groups in the intermolecular interactions. In the present study, the neutral chlorine Cl (Mullikan charge is 0.0038 and 0.0256 by RHF and B3LYP respectively) does not take part in intermolecular interaction, whereas fluorine F (Mullikan charge is −0.4358 and −0.3319 by RHF and B3LYP respectively) took active part in intermolecular interactions. The calculated HOMO and LUMO energies show that charge transfer occur in the molecule. To investigate the effect of different substituted groups on molecular conformation and hence on its pharmacology, the title compound redesigned with different halogens replacing fluorine of fluoro-phenyl ring and docked with human estrogen receptor (2IOK) and attempted to predict the best drug.

Graphical Abstract

The molecular structure of 2-chloro-4-(4-fluro-phenyl)-6-isopropyl-pyrimidine-5-carboxylic acid methyl ester has been determine, weak but significant interactions like C–H···O, C–H···F and ππ are involved in the stability of the structure and the quantitative contributions of these interactions towards the crystal packing are investigated by Hirshfeld surface analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lagoja LM (2005) Chem Biodivers 2(1):1–50

    Article  CAS  Google Scholar 

  2. Hashash MA, Mahmoud MR, Madboli SA (1993) Indian J Chem B 32:449–451

    Google Scholar 

  3. Brunelle MN, Lucifora J, Neyts J, Villet S, Holy A, Trepo C, Zoulim F (2007) Antimicrob Agents Chemother 51:2240

    Article  CAS  Google Scholar 

  4. Ding Y, Girardet JL, Smith KL, Larson G, Prigaro B, Wu JZ, Yao N (2006) Bioorg Chem 34:26

    Article  CAS  Google Scholar 

  5. Calabresi P, Parks RE, Goodman LS, Gilman A (1975) The pharmacological basis of therapeutics, 5th edn. Macmillan, New York

    Google Scholar 

  6. Safarjalani N, Zhou X, Rais RH, Shi J, Schinazi RF, Naguib FNM, Kouni MH (2005) Cancer Chemother Pharm 55:541

    Article  Google Scholar 

  7. Kandeel MM, Mohamed LW, Hamid MAEK, Negmeldin AT (2012) Sci Pharmaceut 80(3):531–545

    Article  CAS  Google Scholar 

  8. Al-Safarjalani ON, Zhou X, Rais RH, Shi J, Schinazi RF, Naguib FNM, El-Kouni MH (2005) Cancer Chemother Pharm 55:541–551

    Article  CAS  Google Scholar 

  9. Bruno V, Castaldo A, Centore R, Sirigu A, Sarcinelli F, Casalboni M, Pizzoferrato R (2002) J Polym Sci A Polym Chem 40:1468–1475

    Article  CAS  Google Scholar 

  10. Castaldo A, Centore R, Peluso A, Sirigu A, Tuzi A (2002) Struct Chem 13:27–36

    Article  CAS  Google Scholar 

  11. Patel UH, Gandhi SA (2008) Indian J Pure Appl Phys 49:263–269

    Google Scholar 

  12. Patel UH, Gandhi SA, Barot VM, Patel MC (2009) Acta Crystallogr E 68:o2926

    Article  Google Scholar 

  13. Patel UH, Gandhi SA, Barot VM, Patel MC (2013) Cryst Struct Theory Appl 2:167

    Google Scholar 

  14. Patel UH, Gandhi SA, Barot VM, Patel MC (2016) Mol Cryst Liq Cryst 624:190–204

    Article  CAS  Google Scholar 

  15. Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  16. Fabbiani FPA, Leech CK, Shankland K, Johnston A, Fernandes P, Florence AJ, Shankland N (2007) Acta Crystallogr C63:o659

    Google Scholar 

  17. Seth SK, Saha I, Estarellas C, Frontera A, Kar T, Mukhopadhyay S (2011) Cryst Growth Des 11:3250

    Article  CAS  Google Scholar 

  18. Sheldrick GM (2013) Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  19. Sheldrick GM (2015) Acta Crystallogr A 71:3–8

    Article  Google Scholar 

  20. Farrugia LJ (2012) J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  21. Spek AL (2009) Acta Crystallogr D 65:148–155

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  23. Jhonson BG, Gill PM, Pople JA (1993) J Chem Phys 98:5612

    Article  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09 Revision A1. Gaussian Inc., Wallingford, CT

    Google Scholar 

  26. Dennington R, Keith T, Millam J (2009) Gauss view version 5. Semichem Inc., Shawnee Mission KS

    Google Scholar 

  27. Wollf SK, Grimwood DJ, McKinnon JJ, Jayatilaka D, Spackman MA (2007) Crystalexplorer 2.1. University of Western Australia, Perth

    Google Scholar 

  28. Clausen HF, Chevallier MS, Spackman MA, Iversen BB (2010) New J Chem 34:193–199

    Article  CAS  Google Scholar 

  29. Ritchie DW, Venkatraman V (2010) Ultra-fast FFT protein docking on graphics processors. Bioinformatics 26:2398–2405

    Article  CAS  Google Scholar 

  30. Nardelli M (1995) J Appl Crystallogr 28:659

    Article  CAS  Google Scholar 

  31. Bernstein J, Davis RE, Shimoni L (1995) Angew Chem Int Edit 34:1555

    Article  CAS  Google Scholar 

  32. Yılmaz B, Saracoglu H, Caliskan N, Yilmaz I, Cukurovali A (2012) J Chem Crystallogr 42:897–904

    Article  Google Scholar 

  33. Kara YS, Sagdinc SG, Karaday N (2013) Spectrochim Acta Part A 110:351–363

    Article  CAS  Google Scholar 

  34. Namık Ö, Bilge E, Muharrem D, Yunus B (2010) Mol Phys 108:13–24

    Article  Google Scholar 

  35. Dhananjaya K, Sibi G, Mallesha H, Ravikumar KR, Awasthi S (2012) Asian Pac J Trop Biomed 2:S1747–S1753

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to CSMCRI, Bhavnagar, India for collecting intensity data of the crystal using Smart Apex –II CCD diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahaj A. Gandhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, S.A., Patel, U.H., Modh, R.D. et al. Quantum Chemical Calculations (Ab Initio & DFT), Hirshfeld Surface Analysis, Crystal Structure and Molecular Docking Study of 2-Chloro-4-(4-fluoro-phenyl)-6-isopropyl-pyrimidine-5-carboxylic Acid Methyl Ester. J Chem Crystallogr 46, 387–398 (2016). https://doi.org/10.1007/s10870-016-0668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-016-0668-5

Keywords

Navigation