Skip to main content
Log in

Molecular Structure and Density Functional Theory Calculations of 3-(3-Nitrothien-2-yl)indole: Structural and Vibrational Analysis

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

An X-ray diffraction study along with crystal supramolecular analysis of 3-(3-nitrothien-2-yl)indole, I, were carried out. The crystals are orthorhombic; C12H8N2O2S; M = 244.26; a = 13.3286 (6) Å, b = 7.5109 (4) Å, c = 21.8144 (9) Å; α = β = γ = 90°; V = 2183.83 (18) Å3, d c = 1.486 g/cm3, Z = 8, space group Pbca. The crystal structure of the title compound consists of two planar rings, the indole ring and the substituted thiophene ring. The inter-planar angle between the indole ring system and thiophene ring is 34.39°. The dihedral angle of the NO2 plane and the thiophene plane is 5.09°. The crystal packing shows crystal supramolecularity in which molecules are connected via different C–H···O, N–H···C(π) intermolecular interactions with edge-to-face and offset-face-to-face aryl···aryl, interactions consolidating three-dimensional network. The molecular geometry and vibrational frequencies of (C12H8N2O2S) in the ground state have been calculated by using density functional method (DFT/B3LYP) with 6-311++G(d,p) basis set. The optimized geometric bond lengths and bond angles and IR stretching frequencies obtained show good agreement with the experimental data.

Graphical Abstract

The crystal structure reveals different crystal supramolecularity motifs via C–H···O, N–H···C(π) and edge-to-face and offset-face-to-face aryl···aryl, interactions consolidating three-dimensional network. Density functional method (DFT/B3LYP) with 6-311++G(d,p) basis set of the obtained optimized geometric and IR stretching frequencies show good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kochanowska-Karamyan AJ, Hamann MT (2010) Chem Rev 110:4489

    Article  CAS  Google Scholar 

  2. Barden TC (2011) Top Heterocycl Chem 26:31

    Google Scholar 

  3. Ali NAS, Dar BA, Pradhan V, Farooqui M (2013) Mini Rev Med Chem 13:1792

    Article  Google Scholar 

  4. Abu Safieh KA, El-Abadelah MM, Zarga MHA, Sabri SS, Voelter W, MÖssmer CM (2001) J Heterocycl Chem 38:623

    Article  CAS  Google Scholar 

  5. Moosa BA, Abu Safieh KA, El-Abadelah MM (2002) Heterocycles 57:1831

    Article  CAS  Google Scholar 

  6. Agilent (2012) CrysAlis PRO. Agilent Technologies, Yarnton

  7. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339

    Article  CAS  Google Scholar 

  8. Sheldrick GM (2000) SHELXTL (version 6.10), Structure determination software suite

  9. Frisch MJ et al (2003) Gaussian 03, Revision B.03. Pittsburgh PA, USA: Gaussian Inc.

  10. Becke AD (1993) J Chem Phys 98:564

    Article  Google Scholar 

  11. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785

    Article  Google Scholar 

  12. Reva I, Lopes Jesus AJ, Rosado MTS, Fausto R, Eusébio ME, Redinha JS (2006) Phys Chem Chem Phys 8:5339

    Article  CAS  Google Scholar 

  13. Andrzejewska A, Lapinski L, Reva I, Fausto R (2002) Phys Chem Chem Phys 4:3289

    Article  CAS  Google Scholar 

  14. Jaworskaa A, Maleka K, Marzecb KM, Baranska M (2012) Vib Spectrosc 63:469

    Article  Google Scholar 

  15. Jamróz MH (2004) Vibrational energy distribution analysis VEDA 4. Warsaw

  16. Beddoes RL, Dalton L, Joule TA, Mills OS, Street JD, Watt CIF (1986) J Chem Soc Perkin Trans 2:787

    Article  Google Scholar 

  17. Paramasivam S, Purushothaman S, Seshadri PR, Raghunathan R (2013) Acta Cryst E69:o314

    Google Scholar 

  18. de Jager JJ, Smith VJ (2012) Acta Cryst E68:o3486

    Google Scholar 

  19. Ge Y-H, Han P, Wei P, Ou-yang P-K (2010) Acta Cryst E66:o2390

    Google Scholar 

  20. Majoube M, Vergoten G (1992) J Raman Spectrosc 23:431

    Article  CAS  Google Scholar 

  21. Majoube M (1989) J Raman Spectrosc 20:49

    Article  CAS  Google Scholar 

  22. Majoube M (1988) J Phys Chem 92:2407

    Article  CAS  Google Scholar 

  23. Ozel AE, Gunduz SK, Celik S, Akyuz S (2013) J Spectrosc. doi:10.1155/2013/538917

    Google Scholar 

  24. Lautie MF (1978) Ph.D thesis, Universitb Pierre et Marie Curie, Paris

  25. Lautie A, Lautie MF, Gruger A, Fakhri SA (1980) Spectrochim Acta Part A 36:85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basem F. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Safieh, K.A., Khanfar, M.A., El-Barghouthi, M.I. et al. Molecular Structure and Density Functional Theory Calculations of 3-(3-Nitrothien-2-yl)indole: Structural and Vibrational Analysis. J Chem Crystallogr 44, 330–336 (2014). https://doi.org/10.1007/s10870-014-0519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-014-0519-1

Keywords

Navigation