Skip to main content
Log in

A Trinuclear Crystallochromic Cd(II) Complex with Zwitterionic Coordination Terminals: Network of Metalorganic Motifs Through C–H⋯N and Charge Promoted N∂+–H⋯N Associations in Solid State

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

In aqueous medium at pH 6, cadmium acetate dihydrate combines with 4,6-dimethylpyrimidine-2-thiol to form a centrosymmetric Cl, S-bridged complex having zwitterionic terminals. The zwitterionic nature of this complex is evidenced by its pH and conductance values in methanol solution. It crystallizes in the space group P21/c (Z = 4 asymmetric units, two molecules), each molecule being uncommonly characterized by a centric Cd(II)S2Cl2N2 as well as two acentric and anionic Cd(II)S3ClN2 coordination chromophores with counter cationic ligands. Relevant literature reports indicate a template relation between the structural designs of this complex and hydrated cadmium acetate, the metalorganic precursor. Packing of molecular motifs through weak C–H···N and strong charge-enhanced Nδ+–H···N interactions generate the crystal structure with numerous screw–glide related small voids. Attempt has been made to rationalize the crystallochromic nature of the complex (pale green in solution, pale orange while crystalline) by time dependent DFT and ZINDO/S studies.

Graphical Abstract

In aqueous medium, cadmium acetate combines with 4,6-dimethylpyrimidine-2-thiol to form a centrosymmetric, trinuclear complex with zwitterionic terminals. The crystallochromic behaviour of this complex is investigated by quantum chemical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hidalgo HA, Koppa V, Bryan ES (1976) FEBS Lett 64(1):159

    Article  CAS  Google Scholar 

  2. Hughes MN (1981) The inorganic chemistry of biological processes, 2nd edn. Wiley, New York

    Google Scholar 

  3. Sigel H (ed) (1986) Metal ions in biological systems, vol 20, 1st edn. Marcel Dekker, New York

    Google Scholar 

  4. Klaassen CD (2006) In: Brunton LL, Lazo JS, Parker KL (eds) Heavy metals and heavy metal antagonists. In: Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn, Sect. XV, Chap 65. McGraw–Hill, Whitby, pp 1766–1767

  5. International Agency for Research on Cancer (1993) IARC Monogr Eval Carcinog Risks Hum 58:1–415

  6. Ferreirós–Martinez R, Esteban–Gómez D, Platas–Iglesias C, de Blas A, Rodríguez–Blas T (2008) Dalton Trans 42:5754

  7. Yordanov AT, Roundhill DM (1998) Coord Chem Rev 170:93

    Article  CAS  Google Scholar 

  8. López-Garzón R, Godino-Salido ML, Gutiérrez-Valero MD, Moreno JM, Odedra R (1995) Inorg Chim Acta 232:139

    Article  Google Scholar 

  9. Abbot J, Goodgame DML, Jeeves I (1978) J Chem Soc Dalton Trans 7:880

    Article  Google Scholar 

  10. Larder BA, Kemp SD, Harrigan PR (1995) Science 269:696

    Article  CAS  Google Scholar 

  11. López–Garzón R, Gutiérrez–Valero MD, Godino–Salido ML, Keppler BK, Nuber B (1993) J Coord Chem 30(2):111

    Article  Google Scholar 

  12. Petering DH, Antholine WE, Saryan LA (1984) Anticancer and interferon agents, Chap 7. Marcel Dekker, New York

    Google Scholar 

  13. Karagiannidis P, Hadjikakou SK, Aslanidis P, Hountas A (1990) Inorg Chim Acta 178(1):27

    Article  CAS  Google Scholar 

  14. Battaglia LP, Battistuzzi R, Bonamartini Corradi A, Rizzolie C, Sgarabotto P (1993) J Crystallogr Spectrosc Res 23(12):937

    Article  CAS  Google Scholar 

  15. Seth S (1994) Acta Cryst C50:1196

    CAS  Google Scholar 

  16. Castro R, Garcia–Vázquez JA, Romero J, Sousa A, Pritchard R, McAuliffe CA (1994) J Chem Soc Dalton Trans 7:1115

    Article  Google Scholar 

  17. Castro R, Durán ML, Garciá–Vázquez JA, Romero J, Sousa A, Castellano EE, Zukermann–Schpector J (1992) J Chem Soc Dalton Trans 17:2559

    Article  Google Scholar 

  18. Seth S, Das AK, Mak TCW (1995) Acta Cryst C 51:2529

    Article  Google Scholar 

  19. Au YK, Cheung KK, Wong WT (1995) J Chem Soc Dalton Trans 6:1047

    Article  Google Scholar 

  20. Rodríguez A, Garciá–Vázquez JA, Sousa–Pedrares A, Romero J, Sousa A (2003) Inorg Chem Commun 6:619

    Article  CAS  Google Scholar 

  21. Lang ES, de Oliviera GM, Casagrande GA, Vázquez–López EM (2003) Inorg Chem Commun 6:1297

    Article  CAS  Google Scholar 

  22. Eichöffer A, Buth G (2005) Eur J Inorg Chem 20:4160

    Article  CAS  Google Scholar 

  23. Harrison W, Trotter J (1972) J Chem Soc Dalton Trans 8–9:956

    Article  Google Scholar 

  24. Seth S, Das AK, Mak TCW (1996) Acta Cryst C52:910

    CAS  Google Scholar 

  25. Sheldrick GM (2008) Acta Cryst A 64:112

    Article  CAS  Google Scholar 

  26. Nardelli M (1983) Comput Chem 7:95

    Article  CAS  Google Scholar 

  27. Farrugia LJ (1997) Ortep–3 for Windows version 2.02. J Appl Cryst 30:565, 568

    Google Scholar 

  28. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339

    Article  CAS  Google Scholar 

  29. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  CAS  Google Scholar 

  30. Huzinaga S (1965) J Chem Phys 42:1293

    Article  Google Scholar 

  31. Dunning TH (1970) J Chem Phys 53:2823

    Article  CAS  Google Scholar 

  32. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  CAS  Google Scholar 

  33. Becke AD (1986) J Chem Phys 84:4524

    Article  CAS  Google Scholar 

  34. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  35. Perdew JP (1986) Phys Rev B34:7406

    Article  Google Scholar 

  36. Perdew JP, Yue W (1986) Phys Rev B33:8800

    Article  Google Scholar 

  37. Slep LD, Mijovilovich A, Meyer–Klaueke W, Weyhermuller T, Bill E, Bothe E, Neese F, Wieghart K (2003) J Am Chem Soc 125:15554

    Article  CAS  Google Scholar 

  38. Herebian D, Weighart KE, Neese F (2003) J Am Chem Soc 125:10997

    Article  CAS  Google Scholar 

  39. Ghosh P, Bill E, Weyhermuller T, Neese F, Weighart KE (2003) J Am Chem Soc 125:1293

    Article  CAS  Google Scholar 

  40. Einsles O, Messerschmidt A, Huber R, Kroneck PMH, Neese F (2002) J Am Chem Soc 124:11737

    Article  CAS  Google Scholar 

  41. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  42. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  44. Neto JDDM, Zerner MC (2001) Int J Quantum Chem 81:187

    Article  Google Scholar 

  45. Zhuge F, Wu B, Dong L, Yang J, Janiak C, Tang N, Yang X (2010) Aust J Chem 63(9):1358

    Article  CAS  Google Scholar 

  46. Zhuge F, Wu B, Yang J, Janiak C, Tang N, Yang X (2010) Chem Commun 46(7):1121

    Article  CAS  Google Scholar 

  47. Gill-Hernandez B, Hoppe HA, Vieth JK, Sanchiz J, Janiak C (2010) Chem Commun 46(43):8270

    Article  CAS  Google Scholar 

  48. Drascovic BM, Bogdanovic GA, Neelakantan MA, Chamayou A, Thalamuthu S, Avadhut YS, Schemedt auf der Gunne J, Banerjee S, Janiak C (2010) Cryst Growth Des 10(4):1665

    Article  CAS  Google Scholar 

  49. Habib HA, Gill-Hernandez B, Abu-Shandi K, Sanchiz J, Janiak C (2010) Polyhedron 29(12):2537

    Article  CAS  Google Scholar 

  50. Muthuraman M, Fur YL, Bagieu-Beucher M, Masse R, Nicoud J-F, George S, Nangia A, Desiraju GR (2000) J Solid State Chem 152(1):221

    Article  CAS  Google Scholar 

  51. Ayers PW, Yang W, Bartolotti LJ (2009) In: PK Chattaraj (ed) Chemical reactivity theory: a density functional view, chap 18. Taylor & Francis, New York

  52. Bultinck P, Carbó-Dorca R, Langenaeker W (2003) J Chem Phys 118(10):4349

    Article  CAS  Google Scholar 

  53. Eshimbetov AG, Kristallovich EL, Abdullaev ND, Tulyaganov TS, Shakhidoyatov KhM (2006) Spectrochim Acta A 65:299

    Article  CAS  Google Scholar 

  54. Cavichiolo LJ, Hasegawa T, Numes FS (2006) Spectrochim Acta A 65:859

    Article  CAS  Google Scholar 

  55. Li G–Z, Yang J, Song H–F, Yang S–S, Lu W–C, Chen N–Y (2004) J Chem Inf Comput Sci 44:2047

  56. Dondela B, Peszke J, Sliwa W (2005) J Mol Struct 753:154

    Article  CAS  Google Scholar 

  57. Das AK, Gowda NS, Botoshansky M, Sridhar MA, Kaftory M, Prasad JS (2009) J Mol Struct 938:259

    Article  CAS  Google Scholar 

  58. van Niekark JN, Schoening FRL, Talbot JH (1953) Acta Cryst 6:720

    Article  Google Scholar 

  59. Das AK, Fuller A, Slawin AMZ (2011) J Chem Crystallogr 41:1124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. A. V. Saha, Department of Chemistry, R. K. Mission Residential College, Narendrapur, India and Dr. S. Mukherjee, Indian Institute of Chemical Biology, India for their valuable suggestions and discussions. Financial assistance from the University Grants Commission, India in the form of M. R. P. to A. K. Das is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asish K. Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10870_2014_496_MOESM1_ESM.doc

Supplementary Material: Fractional atomic coordinates and equivalent isotropic thermal parameters of non-H and interactive H atoms are given in Table 1 of supplementary information; in this section, Figs. 1 and 2 reveal FMOs of the ligand and the ligand(−) ion respectively. Schemes 1–7 attempt to provide a mechanistic account of the ionic peaks observed in the EI mass spectrum of the complex. Fractional atomic coordinates and Ueq of non-interactive H atoms, anisotropic thermal parameters of all non-H atoms, full listing of bond lengths and angles including torsion angles involving all H toms are deposited with Cambridge Crystallographic Data Centre, CCDC 767416 and may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2, 1EZ, UK or www.ccdc.cam.ac.uk/conts/retrieving.html. Tables for observed and calculated structure factors together with the CIF are available from the authors on request. Supplementary material 1 (DOC 27 kb)

Supplementary material 2 (DOC 575 kb)

Supplementary material 3 (DOC 534 kb)

Supplementary material 4 (JPEG 59 kb)

Supplementary material 5 (JPEG 73 kb)

Supplementary material 6 (JPEG 57 kb)

Supplementary material 7 (JPEG 48 kb)

Supplementary material 8 (JPEG 50 kb)

Supplementary material 9 (JPEG 67 kb)

Supplementary material 10 (JPEG 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A.K., Chattopadhyay, A.P., Fuller, A. et al. A Trinuclear Crystallochromic Cd(II) Complex with Zwitterionic Coordination Terminals: Network of Metalorganic Motifs Through C–H⋯N and Charge Promoted N∂+–H⋯N Associations in Solid State. J Chem Crystallogr 44, 177–184 (2014). https://doi.org/10.1007/s10870-014-0496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-014-0496-4

Keywords

Navigation