Skip to main content
Log in

Single-Crystal Structure of Fully Dehydrated, Largely Rb+-Exchanged Zeolite Y (FAU, Si/Al = 1.56), |Rb59Na16|[Si117Al75O384]-FAU

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A single crystal of fully dehydrated, largely Rb+-exchanged zeolite Y, |Rb59Na16|[Si117Al75O384]-FAU (Si/Al = 1.56), prepared by exchange of |Na75|[Si117Al75O384]-FAU with an aqueous stream 0.1 M RbOH at 293 K, followed by vacuum dehydration at 673 K and at 1 × 10−6 Torr. Its crystal structure was determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group Fd \(\overline{3}\) m and was refined to the final error indices R 1/wR 2 = 0.0392/0.1189. In the structure of |Rb59Na16|[Si117Al75O384]-FAU, about 59 Rb+ ions per unit cell occupy five different equipoints; 9 are at site I, 9 at site I′, 3 at site II′, 28 at site II, and the remaining 10 are at site III, preferring II. The residual 16 Na+ ions occupy three equipoints; 5 are at site I′, 3 at site II, and 8 are at site III. These Rb+ and Na+ ions filled full from hexagonal prism to supercage. This work achieved the highest level of Rb+-exchange (ca. 81 %) in the single-crystal structure of zeolite Y by conventional method using aqueous solution at room temperature. The distributions of Rb+ and Na+ ions in this structure, as compared to fully dehydrated partially Rb+-exchanged zeolite X, are different due to local Si/Al order among the T atoms.

Graphical Abstract

The single-crystal structure of fully dehydrated, largely Rb+-exchanged zeolite Y, |Rb59Na16|[Si117Al75O384]-FAU (Si/Al = 1.56), was determined by single-crystal synchrotron X-ray diffraction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lim WT, Seo SM, Wang L, Lu GQ, Seff K (2010) Microporous Mesoporous Mater 129:11–21

    Article  CAS  Google Scholar 

  2. Lim WT, Seo SM, Kim GH, Lee HS, Seff K (2007) J Phys Chem C 111:18294–18306

    Article  CAS  Google Scholar 

  3. Kim HS, Bae D, Lim WT, Seff K (2012) J Phys Chem C 116:9009–9018

    Article  CAS  Google Scholar 

  4. Seo SM, Kim GH, Lee HS, Ko SO, Lee OS, Kim YH, Kim SH, Heo NH, Lim WT (2006) Anal Sci 22:x209–x210

    Article  CAS  Google Scholar 

  5. Su H, Kim HS, Seo SM, Ko SO, Suh JM, Kim GH, Lim WT (2012) Bull Korean Chem Soc 33:2785–2788

    Article  CAS  Google Scholar 

  6. Seo SM, Lee OS, Kim HS, Bae D, Chun IJ, Lim WT (2007) Bull Korean Chem Soc 28:1675–1682

    Article  CAS  Google Scholar 

  7. Seo SM, Kim GH, Lee SH, Bae JS, Lim WT (2009) Bull Korean Chem Soc 30:1285–1292

    Article  CAS  Google Scholar 

  8. Breck DW (1974) Zeolite molecular sieves. Wiley, New York, pp 92–107

    Google Scholar 

  9. Ziolek M, Czyzniewska J, Lamotte J, Lavalley JC (1996) Catal Lett 37:223–227

    Article  CAS  Google Scholar 

  10. Ziolek M, Czyzniewska J, Kujawa J, Travert A, Mauge F, Lavalley JC (1998) Microporous Mesoporous Mater 23:45–54

    Article  CAS  Google Scholar 

  11. Nam SS, Kim H, Kishan G, Choi MJ, Lee KW (1999) Appl Catal A Gen 179:155–163

    Article  CAS  Google Scholar 

  12. Kirschhock CEA, Hunger B, Martens J, Jacobs PA (2000) J Phys Chem B 104:439–448

    Article  CAS  Google Scholar 

  13. Marra GL, Fitch AN, Zecchina A, Ricchiardi G, Salvalaggio M, Bordiga S, Lamberti C (1997) J Phys Chem B 101:10653–10660

    Article  CAS  Google Scholar 

  14. Shepelev YF, Butikova IK, Smolin YI (1991) Zeolites 11:287–292

    Article  CAS  Google Scholar 

  15. Lee SH, Kim Y, Kim DS, Seff K (1998) Bull Korean Chem Soc 19:98–103

    CAS  Google Scholar 

  16. Lee SH, Kim Y, Seff K (2000) J Phys Chem B 104:11162–11167

    Article  CAS  Google Scholar 

  17. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  18. Bruker-AXS (ver. 6.12) (2001) XPREP. Program for the automatic space group determination. Bruker AXS Inc., Madison, Wisconsin, USA

  19. Sheldrick GM (1997) SHELXL97. Program for the refinement of crystal structures. University of Gottingen, Germany

    Google Scholar 

  20. Doyle PA, Turner PS (1968) Acta Crystallogr Sect A 24:390–397

    Article  CAS  Google Scholar 

  21. Ibers JA, Hamilton WC (1974) International tables for X-ray crystallography, vol IV. Kynoch Press, Birmingham, pp 71–98

    Google Scholar 

  22. Cromer DT (1965) Acta Crystallogr 18:17–23

    Article  CAS  Google Scholar 

  23. Ibers JA, Hamilton WC (1974) International tables for X-ray crystallography, vol IV. Kynoch Press, Birmingham, pp 148–150

    Google Scholar 

  24. Loewenstein W (1954) Am Miner 39:92–96

    CAS  Google Scholar 

  25. Breck DW (1974) Zeolite molecular sieves. Wiley, New York, pp 93–103

    Google Scholar 

  26. Van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (2001) Introduction to zeolite science and practice. Elsevier, New York, p 44

    Google Scholar 

  27. Weast RC (ed) (1989/1990) CRC Press Handbook of chemistry and physics, 70th edn. CRC Press, Cleveland, OH, p F-187

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff at Beamline 4A MXW at the Pohang Light Source, Korea, for assistance during data collection. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MEST) (2013M2A8A5025633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Taik Lim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, S.M., Chun, E.Y., Chung, D.Y. et al. Single-Crystal Structure of Fully Dehydrated, Largely Rb+-Exchanged Zeolite Y (FAU, Si/Al = 1.56), |Rb59Na16|[Si117Al75O384]-FAU. J Chem Crystallogr 43, 401–408 (2013). https://doi.org/10.1007/s10870-013-0435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-013-0435-9

Keywords

Navigation