Skip to main content
Log in

Structural comparison of partially dehydrated partially Co2+-exchanged zeolites X (FAU, Si/Al = 1.40) and Y (FAU, Si/Al = 1.70)

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The structures of partially dehydrated and partially Co2+-exchanged zeolites X (Si/Al = 1.40) and Y (Si/Al = 1.70) were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group Fd \(\overline{3}\) m and were refined to the final error indices R 1/wR 2 = 0.0773/0.2152 and 0.0683/0.2184, respectively. Their unit-cell formulas are |Co26.1Na21(H3O)7.1(H2O)14.2|[Si112Al80O384]-FAU (a = 24.7892(2) Å) and |Co29.3Na6.2(H3O)5.9(H2O)5.9|[Si121Al71O384]-FAU (a = 24.7346(2) Å), respectively. In the structure of Co2+-X, Co2+ ions occupy sites I′, II′, II, and III′; the Na+ ions are at sites I′ and II. In the structure of Co2+-Y, Co2+ ions occupy sites I′, II′, II, and III′; the Na+ ions are at site I′. Because of the low pH of the Co2+ exchange solution, some H3O+ ions are observed in both structures. The number of Co2+ ions in zeolite was increased slightly as Si/Al ratio increased, and Na+ content and the unit cell constant of the framework were decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.I. Koranyi, N.H. Pham, A. Jentys, H. Vinek, Stud. Surf. Sci. Catal. 106, 509 (1997)

    Article  CAS  Google Scholar 

  2. Q. Tang, Q. Zhang, H. Wu, Y. Wang, J. Catal. 230, 384 (2005)

    Article  CAS  Google Scholar 

  3. M.V. Patil, M.K. Yadav, R.V. Jasra, J. Mol. Catal. A 277, 72 (2007)

    Article  CAS  Google Scholar 

  4. Y. Li, J.N. Armor, Appl. Catal. A 188, 211 (1999)

    Article  CAS  Google Scholar 

  5. V.M. Rakic, R.V. Hercigonja, V.T. Dondur, Microporous Mesoporous Mater. 27, 27 (1999)

    Article  CAS  Google Scholar 

  6. T. Furusawa, K. Seshan, L. Lefferts, K. Aika, Appl. Catal. B 39, 233 (2002)

    Article  CAS  Google Scholar 

  7. N. Labhsetwar, M. Dhakad, R. Biniwale, T. Mitsuhashi, H. Haneda, P.S.S. Reddy, S. Bakardjieva, J. Subrt, S. Kumar, V. Kumar, P. Saiprasad, S. Rayalu, Catal. Today 141, 205 (2009)

    Article  CAS  Google Scholar 

  8. S. Tsuruya, M. Tsukamoto, M. Watanabe, M. Masai, J. Catal. 93, 303 (1985)

    Article  CAS  Google Scholar 

  9. E.P. De Garcia, M.R. De Goldwasser, C.F. Parra, O. Leal, Appl. Catal. 50, 55 (1989)

    Article  Google Scholar 

  10. S. Tsuruya, H. Miyamoto, T. Sakae, M. Masai, J. Catal. 64, 260 (1980)

    Article  CAS  Google Scholar 

  11. D. Nakashima, Y. Ichihashi, S. Nishiyama, S. Tsuruya, J. Mol. Catal. A 259, 108 (2006)

    Article  CAS  Google Scholar 

  12. B. Ramachandran, H.L. Greene, S. Chatterjee, Appl. Catal. B 8, 157 (1996)

    Article  CAS  Google Scholar 

  13. A.A. Verberckmoes, B.M. Weckhuysen, J. Pelgrism, R.A. Schoonheydt, J. Phys. Chem. 99, 15222 (1995)

    Article  CAS  Google Scholar 

  14. S.M. Seo, W.T. Lim, K. Seff, Microporous Mesoporous Mater. 170, 67 (2013)

    Article  CAS  Google Scholar 

  15. S.M. Seo, H.S. Kim, D.Y. Chung, J.M. Suh, W.T. Lim, Bull. Korean Chem. Soc. 35, 243 (2014)

    Article  CAS  Google Scholar 

  16. S.M. Seo, W.T. Lim, N.H. Heo, K. Seff, J. Porous Mater. 21, 869 (2014)

    Article  CAS  Google Scholar 

  17. S.M. Seo, W.T. Lim, K. Seff, J. Phys. Chem. C 116, 13985 (2012)

    Article  CAS  Google Scholar 

  18. S.M. Seo, M. Park, D.Y. Chung, W.T. Lim, J. Porous Mater. 21, 521 (2014)

    Article  CAS  Google Scholar 

  19. D.W. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974), p. 633

    Google Scholar 

  20. J.J. Van Dun, W.J. Mortier, J. Phys. Chem. 92, 6740 (1988)

    Article  Google Scholar 

  21. C.E.A. Kirschhock, B. Hunger, J. Martens, P.A. Jacobs, J. Phys. Chem. B 104, 439 (2000)

    Article  CAS  Google Scholar 

  22. N.H. Heo, W. Cruz-Patalinghug, K. Seff, J. Phys. Chem. 90, 3931 (1986)

    Article  CAS  Google Scholar 

  23. D. Bae, K. Seff, Microporous Mesoporous Mater. 33, 265 (1999)

    Article  CAS  Google Scholar 

  24. E. Borissenko, F. Porcher, A. Bouche, C. Lecomte, M. Souhassou, Microporous Mesoporous Mater. 114, 155 (2008)

    Article  CAS  Google Scholar 

  25. W.T. Lim, G.C. Jeong, C.K. Park, J.S. Park, Y.H. Kim, Bull. Korean Chem. Soc. 28, 41 (2007)

    Article  CAS  Google Scholar 

  26. W.T. Lim, S.M. Seo, G.H. Kim, H.S. Lee, K. Seff, J. Phys. Chem. C 111, 18294 (2007)

    Article  CAS  Google Scholar 

  27. Z. Otwinowski, W. Minor, Methods Enzymol. 276, 307 (1997)

    Article  CAS  Google Scholar 

  28. Bruker-AXS, (ver 6.12), XPREP, Program for the Automatic Space Group Determination, Bruker AXS Inc., Madison, WI, (2001)

  29. G.M. Sheldrick, SHELXL97: Program for the Refinement of Crystal Structures (University of Gottingen, Germany, 1997)

    Google Scholar 

  30. P.A. Doyle, P.S. Turner, Acta Crystallogr. Sect A 24, 390 (1968)

    Article  CAS  Google Scholar 

  31. J. A. Ibers, W. C. Hamilton (eds.), International Tables for X-ray Crystallography, vol. IV (Kynoch Press, Birmingham, 1974), pp. 71–98

  32. D.T. Cromer, Acta Crystallogr. 18, 17 (1965)

    Article  CAS  Google Scholar 

  33. J. A. Ibers, W. C. Hamilton (eds.), International Tables for X-ray Crystallography, vol. IV (Kynoch Press, Birmingham, 1974), pp. 148-150

  34. W. Loewenstein, Am. Mineral. 39, 92 (1954)

    CAS  Google Scholar 

  35. D.W. Break, Zeolite Molecular Sieves (Wiley, New York, 1974), p. 93

    Google Scholar 

  36. H. Van Bekkum, E.M. Flanigen, P.A. Jacobs, J.C. Jansen, Introduction to Zeolites Science and Practice (Elsevier, Amsterdam, 2001)

    Google Scholar 

  37. Handbook of Chemistry and Physics, 70th ed., The Chemical Rubber Co.: Cleveland, OH, p F-187 (1989/1990)

  38. J.A. Rabo, Zeolite Chemistry and Catalysis, ACS Monograph (American Chemical Society, Washington, DC, 1976)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff at beamline 6B MXI of the Pohang Light Source, Korea, for assistance during data collection. This work was supported by a grant from 2014 Research Fund of Andong National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Oon Ko or Woo Taik Lim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, S.M., Ko, S.O. & Lim, W.T. Structural comparison of partially dehydrated partially Co2+-exchanged zeolites X (FAU, Si/Al = 1.40) and Y (FAU, Si/Al = 1.70). J Porous Mater 23, 95–105 (2016). https://doi.org/10.1007/s10934-015-0059-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0059-x

Keywords

Navigation