Skip to main content
Log in

Crystal Structure and Electronic Properties of a Piroxicam Derivative: A Combined X-Ray Analysis and Quantum Mechanical Studies

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A piroxicam derivative, 4-acetamidobenzenesulfonate-2-methyl-N-(2-pyridal)-2H-1,2-benzothiazine-1,1-dioxide (2), has been synthesized and structurally characterized by X-ray analysis. The electronic structure of (2) was calculated at the DFT level using the hybrid exchange–correlation functional BLYP. The optimized molecular geometry of (2) corresponds closely to that obtained from the X-ray structure analysis. Intermolecular N–H···O and C–H···O hydrogen bonds connect the molecules in (2) forming a two-dimensional supramolecular frameworks in (011) plane, which are further linked via π···π interactions to generate a three dimensional architecture. The relative contribution of different interactions to Hirshfeld surface indicates that the H···H and O···H contacts can account for about 76 % of the total Hirshfeld surface area in (2). The HOMO–LUMO energy gap of 2.77 eV indicates a high kinetic stability of (2).

Graphical Abstract

A piroxicam derivative, 4-acetamidobenzenesulfonate-2-methyl-N-(2-pyridal)-2H-1,2-benzothiazine-1,1-dioxide has been synthesized and structurally characterized by X-ray analysis which generates a three dimensional architecture. Most important figure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banerjee R, Bhatt PM, Ravindra NV, Desiraju GR (2005) Cryst Growth Des 5:2299

    Article  CAS  Google Scholar 

  2. Majerus PW, Breze GJ, Miletich JP, Tollefsen DM (1996) In: Hardman JG, Limbrid LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, p 640

    Google Scholar 

  3. Rietland SR, Gendler SJ (1999) Carcinogenesis 20:51

    Article  Google Scholar 

  4. Banerjee R, Saŗkar M (2002) J Lumin 99:255

    Article  CAS  Google Scholar 

  5. Lemp E, Zanacco AL, Günther G (2001) J Photochem Photobiol B 65:165

    Article  CAS  Google Scholar 

  6. Seth AR, Bates S, Muller FX, Grant DJW (2004) Cryst Growth Des 4:091

    Google Scholar 

  7. Vrecer F, Vrbine M, Meden A (2003) Int J Pharm 256:3

    Article  CAS  Google Scholar 

  8. Reck G, Dietz G, Laban G, Gunther W, Bannier G, Hohne E (1988) Pharmazie 48:477

    Google Scholar 

  9. Kojic-Prodic B, Ruzic-Toros Z (1982) Acta Crystallogr Sect B 38:2948

    Article  Google Scholar 

  10. Seth AR, Bates S, Muller FX, Grant DJW (2005) Cryst Growth Des 5:571

    Article  Google Scholar 

  11. Allen FH (2002) Acta Crystallogr Sect B 58:380

    Article  Google Scholar 

  12. Drebushchak TN, Pankrushina NN, Shakhtshneider TP, Apenina SA (2006) Acta Crystallogr 62:o429

    Google Scholar 

  13. Hammen PD, Berke H, Bordner J, Braisted AC, Lombardino JG, Whipple EB (1989) J Heterocycl Chem 26:11

    Article  CAS  Google Scholar 

  14. Chakraborty S, Ghosh S, Cheemala JMS, Pal S, Mukherjee AK (2007) Zeit Kristallogr 222:437

    Article  CAS  Google Scholar 

  15. Pal S, Bindu P, Dubey PK, Chakraborty S, Mukherjee AK (2009) Eur J Med Chem 44:3368

    Article  CAS  Google Scholar 

  16. Bruker (2002) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

  17. Bruker (2001) SADABS. Bruker AXS Inc., Madison,Wisconsin, USA

  18. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112

    Article  Google Scholar 

  19. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  21. Becke AD (1988) Phys Rev A38:3098

    Google Scholar 

  22. Lee AC, Yang W, Parr RG (1988) Phys Rev B37:785

    Google Scholar 

  23. Hirshfeld FL (1977) Theor Chim Acta 44:129

    Article  CAS  Google Scholar 

  24. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19

    Article  CAS  Google Scholar 

  25. Clausen HF, Chevallier MS, Spackman MA, Iversen BB (2010) New J Chem 34:193

    Article  CAS  Google Scholar 

  26. Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378

    Article  CAS  Google Scholar 

  27. Parkin A, Barr G, Dong W, Gilmore CJ, Jayatilaka D, McKinnon JJ, Spackman MA, Wilson CC (2007) CrystEngComm 9:648

    Article  CAS  Google Scholar 

  28. Wolff SK, Grimwood DJ, McKinnon JJ, Jayatilaka D, Spackman MA (2007) Crystal Explorer 2.0, University of Western Australia, Perth, Australia. http://ra.bcs.uwa.edu.au/CrystalExplorer/

  29. Cremer D, Pople JA (1975) J Am Chem Soc 97:1354

    Article  CAS  Google Scholar 

  30. Childs SL, Hardcastle KI (2007) Cryst Growth Des 7:1291

    Article  CAS  Google Scholar 

  31. Ghosh S, Mukhopadhyay R, Helliwell M, Mukherjee AK (2006) Zeit Kristallogr 221:739

    Article  Google Scholar 

  32. Wardell JL, Skakle JMS, Low JN, Glidewell C (2005) Acta Crystallogr Sect C 61:o634

    Article  Google Scholar 

  33. Ghosh S, Mukhopadhyay R, Helliwell M, Mukherjee AK (2007) Acta Crystallogr Sect C 63:o496

    Article  Google Scholar 

  34. Sonar VN, Parkin S, Crooks PA (2004) Acta Crystallogr Sect C 60:o659

    Article  Google Scholar 

  35. Chumakov YM, Tsapkov VI, Bocelli G, Antosyak BY (2005) Acta Crystallogr Sect C 61:o460

    Article  Google Scholar 

  36. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed 34:1555

    Article  CAS  Google Scholar 

  37. Etter MC (1990) Acc Chem Res 23:120

    Article  CAS  Google Scholar 

  38. Kim KH, Han YK, Jung J (2005) Theor Chem Acc 113:233

    Article  CAS  Google Scholar 

  39. Aihara J (1999) J Phys Chem A 103:7487

    Article  CAS  Google Scholar 

  40. Hazra DK, Mukherjee M, Kumar S (2009) J Mol Struct 920:114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Monika Mukherjee, Department of Solid State Physics, IACS, Kolkata-700032, India, for helping in DFT calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok K. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Hazra, D.K., Chattopadhyay, B. et al. Crystal Structure and Electronic Properties of a Piroxicam Derivative: A Combined X-Ray Analysis and Quantum Mechanical Studies. J Chem Crystallogr 42, 1067–1074 (2012). https://doi.org/10.1007/s10870-012-0360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0360-3

Keywords

Navigation