Skip to main content
Log in

Two-Dimensional Layers Using Different Combinations of Hydrogen Bonded Rings in Three Ammonium Carboxylate Salts

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structure of the ammonium carboxylate salts (cyclohexylammonium)2·(terephthalate) (1), (cyclohexylammonium)2·(trans-1,4-cyclohexanedicarboxylate) (2) and (cyclododecylammonium)2·(trans-1,4-cyclohexanedicarboxylate) (3) were determined by low temperature single crystal X-ray diffraction. The molecular salts were prepared by solution crystallization of the carboxylic acids with the respective amines in a 1:2 stoichiometric ratio. The crystal structure of 1 belongs to the monoclinic space group Cc with a = 11.5643(7) Å, b = 22.8180(13) Å, c = 8.4163(5) Å and β = 117.020(2)°. The crystal structure of 2 belongs to the monoclinic space group P21/n with a = 16.9546(10) Å, b = 6.4352(4) Å, c = 19.3948(12) Å and β = 94.677(4)°. The crystal structure of 3 belongs to the monoclinic space group P21/c with a = 8.1714(5) Å, b = 34.3887(17) Å, c = 11.0230(6) Å and β = 95.790(4)°. The changes in cation and anion species produces three distinct types of layers, with corresponding changes in the hydrogen bonded ring patterns linking the ionic species together using charge-assisted N+–H···O hydrogen bonds.

Index Abstract

The crystal structures of three ammonium carboxylate salts are determined and all form 2-D layers by virtue of having two carboxylate functional groups on their anion molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tiekink ERT, Vittal JJ, Zaworotko MJ (2010) Organic crystal engineering: frontiers in crystal engineering. Wiley, West Sussex

    Google Scholar 

  2. Aakeröy CB, Beatty AM (2001) Aust J Chem 54:409

    Article  Google Scholar 

  3. Kinbara K, Hashimoto Y, Sukegawa M, Nohia H, Saigo K (1996) J Am Chem Soc 118:3441

    Article  CAS  Google Scholar 

  4. Matsumoto A, Odani T, Chikada M, Sada K, Miyata M (1999) J Am Chem Soc 121:11122

    Article  CAS  Google Scholar 

  5. Nagahama S, Inoue K, Sada K, Miyata M, Matsumoto A (2003) Cryst Growth Des 3:247

    Article  CAS  Google Scholar 

  6. Kinbara K, Kai A, Maekawa Y, Hashimoto Y, Naruse S, Hasegawa M, Saigo K (1996) J Chem Soc Perkin Trans 2:247

    Google Scholar 

  7. Aakeröy CB, Beatty AM, Lorimer KR (1999) Struct Chem 10:229

    Article  Google Scholar 

  8. Yuge T, Sakai T, Kai N, Hisaki I, Miyata M, Tohnai N (2008) Chem Eur J 14:2984

    Article  CAS  Google Scholar 

  9. Tanaka A, Hisai I, Tohnai N, Miyata M (2007) Chem Asian J 2:230

    Article  CAS  Google Scholar 

  10. Braga D, Maini L, Grepioni F, De Cian A, Felix O, Fischer J, Hosseini MW (2000) New J Chem 24:547

    Article  CAS  Google Scholar 

  11. Steed JW (2003) CrystEngComm 5:169

    Article  CAS  Google Scholar 

  12. Banerjee R, Mondal R, Howard JAK, Desiraju GR (2006) Cryst Growth Des 6:999

    Article  CAS  Google Scholar 

  13. Banerjee R, Saha BK, Desiraju GR (2006) CrystEngComm 8:680

  14. Lemmerer A, Bourne SA, Fernandes MA (2008) CrystEngComm 10:1605

    Article  CAS  Google Scholar 

  15. Lemmerer A, Bourne SA, Fernandes MA (2008) Cryst Growth Des 8:1106

    Article  CAS  Google Scholar 

  16. Lemmerer A, Bourne SA, Caira MR, Cotton J, Hendricks U, Peinke LC, Trollope L (2010) CrystEngComm 12:3634

    Article  CAS  Google Scholar 

  17. Lemmerer A, Bourne SA, Fernandes MA (2008) CrystEngComm 10:1750

    Article  CAS  Google Scholar 

  18. Lemmerer A (2008) Acta Crystallogr C64:o626

    CAS  Google Scholar 

  19. Lemmerer A (2011) CrystEngComm 13:2849

    Article  CAS  Google Scholar 

  20. Lemmerer A (2011) Acta Crystallogr C67:o92

    CAS  Google Scholar 

  21. Lemmerer A (2011) Cryst Growth Des 11:583

    Article  CAS  Google Scholar 

  22. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555

    Article  CAS  Google Scholar 

  23. Bruker (1999) SAINT version 6.02 (includes XPREP), Bruker AXS Inc. Madison, Wisconsin

    Google Scholar 

  24. Sheldrick GM (1996) SADABS. University of Göttingen, Germany

    Google Scholar 

  25. Farrugia LJ (1999) J Appl Crystallogr 32:837

    Article  CAS  Google Scholar 

  26. Sheldrick GM (2008) Acta Crystallogr A64:112

    CAS  Google Scholar 

  27. Farrugia LJ (2003) J Appl Crystallogr 36:565

    Article  Google Scholar 

  28. Spek AL (2003) J Appl Crystallogr 36:7

    Article  CAS  Google Scholar 

  29. Brandenburg K (1999) J Appl Crystallogr 32:1028

    Google Scholar 

  30. Allen FH, Kennard O, Watson DG, Brenner L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1

    Google Scholar 

Download references

Acknowledgement

The University of the Witwatersrand and the Molecular Sciences Institute are thanked for providing the infrastructure and financial support required to do this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lemmerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemmerer, A. Two-Dimensional Layers Using Different Combinations of Hydrogen Bonded Rings in Three Ammonium Carboxylate Salts. J Chem Crystallogr 42, 338–344 (2012). https://doi.org/10.1007/s10870-011-0249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0249-6

Keywords

Navigation