Skip to main content
Log in

Convenient Route to Alkylene Dithiophosphato Ligands: Synthesis and Crystallographic Analysis of [OCH2CMe2CH2OPS2HNEt3]

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Triethylammonium salts of O,O′-alkylene dithiophosphato like OGOPS2HNEt3, [where, G = –CH2CMe2CH2–(1), –CH2CEt2CH2–(2), –CMe2CH2CHMe–(3) and –CMe2CMe2–(4)] have been synthesized in quantitative yield by the direct reaction of P2S5 with 1,2- and 1,3-substituted glycols in presence of triethylamine, Et3N, in 1:2:2 molar stoichiometry in toluene. These have been mainly characterized by molecular weight, IR and NMR (1H, 13C and 31P) spectroscopic studies. Single crystal X-ray structure analysis of [OCH2CMe2CH2OPS2HNEt3] reveals that phosphorus atom is tetrahedrally bonded to two sulfur atoms and two oxygen atoms in the ring and the molecule exists as discrete cation and anion. The structure is stabilized by cation–anion N–H···S hydrogen bonded interactions. Antiparallel pattern of triethylammonium ion is sandwiched within the two-dimensional layers of the ring system.

Graphical Abstract

Crystallographic analysis of [OCH2CMe2CH2OPS2HNEt3] reveals that phosphorus atom is tetrahedrally bonded to two sulfur atoms and two oxygen atoms in the ring and the molecule exists as discrete cation and anion. The structure is stabilized by cation-anion N-H···S hydrogen bonded interactions. Antiparallel pattern of triethylammonium ion is sandwiched within the two-dimensional layers of the ring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baker DR (1977) U.S. Patent 5012, 421

    Google Scholar 

  2. Baker DR (1977) Chem Abstr 87:6201

    Google Scholar 

  3. Kubo H (1965) Agric Biol Chem 29:43

    Article  CAS  Google Scholar 

  4. Varsanyl D, Margot AF, Schwinn AS (1971) Afr Pat 7006:908

    Google Scholar 

  5. Varsanyl D, Margot AF, Schwinn AS (1972) Chem Abstr 76:14102s

    Google Scholar 

  6. Olah GA, Oswald AA (1962) U.S. Patent 3024, 261

    Google Scholar 

  7. Olah GA, Oswald AA (1962) Chem Abstr 57:11019f

    Google Scholar 

  8. Coetti C, Leskoiti S (1970) J Expt Med 131:571

    Article  Google Scholar 

  9. Anderson HH (1971) Drill`s pharmacal med, 4th edn, McGraw Hill Book Co., New York, p 1793

  10. Anderson HH (1973) Chem Abstr 77:134969w

    Google Scholar 

  11. Doak GO, Freedman LD (1970) Medicinal chemistry. Wiley Interscience, New York, p 1

    Google Scholar 

  12. Babcock JR, Sita LRJ (1996) Am Chem Soc 118:1248

    Article  Google Scholar 

  13. McKay DL (Phillips Petro Co.) Fr. Demande 2, 362, 267

  14. McKay DL (1979) Fr Demande Chem Abstr 90:41172

    Google Scholar 

  15. Bhasin CP, Chauhan HPS, Srivastava G, Mehrotra RC (1983) Phosph Sulf Silicon Relat Elem 15:49

    Google Scholar 

  16. Chauhan HPS, Srivastava G, Mehrotra RC (1981) Synth React Inorg Met-Org Chem 11(6):565

    Article  CAS  Google Scholar 

  17. Chauhan BPS, Srivastava G, Mehrotra RC (1984) Coord Chem Rev 55:207

    Article  Google Scholar 

  18. Pandey SK, Srivastava G, Mehrotra RC (1991) Phosph Sulf Silicon Relat Elem 61:49

    Article  CAS  Google Scholar 

  19. Pandey SK, Srivastava G, Mehrotra RC (1990) Ind J Chem 29A:339

    CAS  Google Scholar 

  20. Pandey SK, Srivastava G, Mehrotra RC (1989) Synth React Inorg Met-Org Chem 19(8):795

    Article  CAS  Google Scholar 

  21. Pandey SK, Srivastava G, Mehrotra RC (1991) Trans Met Chem 16:252

    Article  Google Scholar 

  22. Gupta RK, Rai AK, Mehrotra RC, Jain VK, Hoskins BF, Tiekink ERT (1983) Inorg Chem 24:2380

    Google Scholar 

  23. Singh BP, Srivastiva G, Mehrotra RCJ (1979) Orgmet Chem 171:35

    Article  CAS  Google Scholar 

  24. Chander R, Kalsotra BL, Pandey SK (2003) Trans Met Chem 28(4):405

    Article  CAS  Google Scholar 

  25. Chauhan HPS (1998) Coord Chem Rev 79:207

    Google Scholar 

  26. Haiduc I (1981) Rev Inorg Chem 3:353

    CAS  Google Scholar 

  27. Nagar PN (2003) In: Bohra R, Mehrotra RC (eds) The chemistry and applications of alkoxy, aryloxy and allied derivatives of elements. RBSA Publ., Jaipur, p 351

    Google Scholar 

  28. Lefferts JL, Molloy KC, Zuckerman JJ, Haiduc I, Guta C, Ruse D (1980) Inorg Chem 19:1662

    Article  CAS  Google Scholar 

  29. Shetty PS, Fernando Q (1970) J Am Chem Soc 92:3964

    Article  CAS  Google Scholar 

  30. Singh BP, Srivastava G, Mehrotra RC (1982) Synth React Inorg Met-Org Chem 12:105

    Article  CAS  Google Scholar 

  31. Sheldrick GM (1994) SHELXTL-PC: a computer program for crystal structure analysis, version 5.01. Siemens Industrial Automation Inc., Madison

    Google Scholar 

  32. Sheldrick GM (1997) SHELXL-97: a computer program for crystal structure analysis. University of Göttingen, Germany

    Google Scholar 

  33. Nardelli M (1983) Comput Chem 7: 95

  34. Allen FH, Kennard O, Watson DG, Brammer L, Orpen G, Taylor R (1987) J Chem Soc Perkin Trans 2: S1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dinesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Dinesh, J., Kour, S. et al. Convenient Route to Alkylene Dithiophosphato Ligands: Synthesis and Crystallographic Analysis of [OCH2CMe2CH2OPS2HNEt3]. J Chem Crystallogr 42, 299–304 (2012). https://doi.org/10.1007/s10870-011-0236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0236-y

Keywords

Navigation