Skip to main content
Log in

Hydrogen Bonding Patterns in Trimethoprimium Cinnamate 1.52 Hydrate

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

In the title compound, [C14H19N4O3 +, C9H5 O2 , H2O, O0.52] the asymmetric unit contains a protonated trimethoprim cation and a cinnamate anion and two water molecules. The crystal structure was determined by single crystal X-ray diffraction. This compound crystallized in the triclinic system; space group P−1 with the unit cell parameters a = 10.010(2) Å, b = 10.339(3) Å, c = 13.486(8) Å, α = 105.32(3)°, β = 109.88(3)°, γ = 100.89(3)°, V = 1204.6(10) Å3, Z = 2. The cinnamate group is disordered. The trimethoprim (TMP) molecule is protonated at one of the pyrimidine nitrogen atoms. The carboxylate group of the cinnamate anion interacts with the protonated pyrimidine atom N1 and the 2-amino group via a pair of N–H···O hydrogen bonds, generating the R 22 (8) ring motif. The inversion related TMP cations are paired via N–H···N hydrogen bonds. In addition to the base pairing, the O1W atom bridges the 2-amino and 4-amino groups on either side of the paired bases, resulting in a self complementary DADA array. Two inversion related TMP cations and water molecules (O1W) are linked via N–H···O and O–H···O hydrogen bonds, forming a 22 membered ring with graph-set R 44 (22).

Graphical Abstract

The protonated trimethoprim cation interacts with the cinnamate anion through a pair of N-H…O hydrogen bonds, generating the R 22 (8) ring motif.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lehn J-M (1995) Supramolecular chemistry. VCH, Weinheim

    Book  Google Scholar 

  2. Desiraju GR (1989) Crystal engineering: the design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  3. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629–1658

    Article  CAS  Google Scholar 

  4. Desiraju GR (2001) Nature 412:397–400

    Article  CAS  Google Scholar 

  5. Desiraju GR (2001) Curr Sci 81:1038–1042

    CAS  Google Scholar 

  6. Desiraju GRJ (2003) Mol Struct 656:5–15

    Article  CAS  Google Scholar 

  7. Etter MC, Adsmond DA (1990) J Chem Soc Chem Commun 589–591

  8. Goswami S, Mahapatra AK, Nigam GD, Chinnakali K, Fun H-K, Razak IA (1999) Acta Crystallogr Sect C 55:583–585

    Article  Google Scholar 

  9. Pedireddi VR, Chatterjee S, Ranganathan A, Rao CNR (1998) Tetrahedron 54:9457–9474

    Article  CAS  Google Scholar 

  10. Koetzle TF, Williams GJBJ (1976) Am Chem Soc 98:2074–2078

    Article  CAS  Google Scholar 

  11. Bettinetti GP, Giordano F, La Manna A, Giuseppetti G, Tadini C (1985) Acta Crystallogr Sect C 41:1249–1253

    Article  Google Scholar 

  12. Bryan RF, Haltiwanger RC, Woode MK (1987) Acta Crystallogr Sect C 43:2412–2415

    Article  Google Scholar 

  13. Schwalbe CH, Cody V (2006) Crystallogr Rev 4:267–300

    Article  Google Scholar 

  14. Murugesan S, Muthiah PT (1997) Acta Crystallogr Sect C 53:763–764

    Article  Google Scholar 

  15. Muthiah PT, Umadevi B, Stanley N, Shui X, Eggleston DS (2001) Acta Crystallogr Sect E 57:o1179–o1182

    Article  Google Scholar 

  16. Stanley N, Muthiah PT, Geib SJ, Luger P, Weber M, Messerschmidt M (2005) Tetrahedron 61:7201–7210

    Article  CAS  Google Scholar 

  17. Hemamalini M, Muthiah PT, Lynch DE (2005) Acta Crystallogr Sect E 61:o4107–o4109

    Article  Google Scholar 

  18. Subashini A, Samuel E, Muthiah PT, Bocelli G, Cantoni A (2007) Acta Crystallogr Sect E 63:o4049–o4049

    Article  Google Scholar 

  19. Prabakaran P, Robert JJ, Muthiah PT, Bocelli G, Righi L (2001) Acta Crystallogr Sect C 57:459–461

    Article  CAS  Google Scholar 

  20. Robert JJ, Raj SB, Muthiah PT (2001) Acta Crystallogr Sect E 57:o1206–o1208

    Article  Google Scholar 

  21. Francis S, Muthiah PT, Bocelli G, Righi L (2002) Acta Crystallogr Sect E 58:o717–o719

    Article  Google Scholar 

  22. Stanley N, Sethuraman V, Muthiah PT, Luger P, Weber M (2002) Cryst Growth Des 2:631–635

    Article  CAS  Google Scholar 

  23. Raj SB, Muthiah PT, Rychlewska U, Warzajtis B (2003) Cryst Eng Comm 5:48–53

    CAS  Google Scholar 

  24. Sethuraman V, Stanley N, Muthiah PT, Sheldrick WS, Winter M, Luger P, Weber M (2003) Cryst Growth Des 3:823–828

    Article  CAS  Google Scholar 

  25. Siemens XSCANS (1994) Version 2.1 Siemens Analytical X-ray instrument Inc, Madison

  26. Sheldrick GM (1997) SHELXS-97 and SHELXL-97. University of Gottingen, Gottingen

    Google Scholar 

  27. Spek AL (2003) J. Appl Cryst 36:7–13

    Article  CAS  Google Scholar 

  28. Hitchings GH, Kuyper LF, Baccananari DP (1988) In: Sandler M, Smith HJ (eds) Design of enzyme inhibitors as drugs. Oxford University Press, New York

    Google Scholar 

  29. Giuseppetti G, Tadini C, Bettinetti GP, Giordano F, La Manna A (1988) Acta Crystallogr Sect C 44:856–860

    Article  Google Scholar 

  30. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

  31. Kuyper LF (1990) In: Bugg CE, Ealick SE (eds) Crystallographic and modeling methods in molecular design. Springer Verlag, New York, pp 56–79

    Google Scholar 

  32. Allen FH, Raithby PR, Shields GP, Taylor R (1998) Chem Commun 9:1043–1044

    Article  Google Scholar 

  33. Panneerselvam P, Stanley N, Muthiah PT (2002) Acta Crystallogr Sect E 58:o180–o182

    Article  Google Scholar 

Download references

Acknowledgment

AS thanks Bharathidasan University, Tiruchirappalli, Tamil Nadu, India for the Award of a Research Studentship [Ref: CCCD/Ph.D-2/15504/2004].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thomas Muthiah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subashini, A., Muthiah, P.T., Bocelli, G. et al. Hydrogen Bonding Patterns in Trimethoprimium Cinnamate 1.52 Hydrate. J Chem Crystallogr 41, 976–979 (2011). https://doi.org/10.1007/s10870-011-0028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0028-4

Keywords

Navigation