Skip to main content
Log in

The Crystal Structure of {[Pt(9S3)Cl2]2[Pt(9S3)2]}Cl2·4H2O: An Improved Synthesis of [Pt(9S3)Cl2]

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

We wish to report the crystal structure for a solid-state solution, {[Pt(9S3)Cl2]2[Pt(9S3)2]}Cl2·4H2O (1), which contains two different complexes of Pt(II) with the trithiacrown 9S3 (1,4,7-trithiacyclononane). One complex [Pt(9S3)Cl2] is neutral and contains a Pt(II) center with a single 9S3 ligand and two coordinated chloro ligands. The second Pt(II) complex is a dication and contains two coordinated 9S3 ligands and two non-coordinating chloride anions. There are two crystallographically equivalent [Pt(9S3)Cl2] complexes present for every single [Pt(9S3)2]2+ cation. Four water solvent molecules are also present. In the neutral complex ([Pt(9S3)Cl2], the Pt(II) center is surrounded by a cis-[S2Cl2 + S1] ligand environment formed by the two chloro ligands and two of the three sulfur atoms from the 9S3 ligand. These two sulfurs are positioned 2.225(2) and 2.242(2) Å from the Pt(II), but the third sulfur shows a long distance interaction at 3.311(2) Å to form an elongated square pyramidal structure. This axial Pt–S distance is the longest observed in 57 crystal structures of Pt(II) 9S3 complexes. The cation [Pt(9S3)2]2+ displays two centrosymmetrically coordinated 9S3 ligands forming a [S4 + S2] environment with an elongated octahedral shape. In the dication, the two equatorial Pt–S distances are 2.297(2) and 2.306(2) Å with the axial sulfur at 3.065(2) Å. The most interesting intermolecular aspects of the structure are hydrogen bonding interactions between two of the water molecules and two chloride counter-ions, resulting in a nearly square O2Cl2 ring. This ring shares an edge with a six-membered ring formed by four waters and two chlorides which are hydrogen bonded. The hydrogen bonding interactions, which result from the presence of water in the crystal, appear to be an important component in stabilizing the lattice for the unusual solid-state solution structure. Crystal Data for (1): P2 1 /n, a = 7.8327(10) Å, b = 25.152(4) Å, c = 12.382(2) Å, V = 2314.3(6) Å3, Z = 2. We also report an improved synthetic procedure for the preparation of two thiacrown complexes [Pt(9S3)Cl2] and [Pt(10S3)Cl2], which are commonly used as precursors for other heteroleptic thioether complexes. The new syntheses proceed at room temperature without the need for long reflux times and produce large crystals which are easily isolable without filtration. The simplicity of these new preparations results in improved yields over previously employed methods.

Graphical Abstract

The title complex crystallizes to form a solid-state solution of two different Pt(II) thiacrown complexes, [Pt(9S3)Cl2] and [Pt(9S3)]2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blake AJ, Schröder M (1990) In: Sykes AG (ed) Advances in inorganic chemistry, vol 35. Academic Press, Inc., New York, p 2

    Google Scholar 

  2. Cooper S, Rawle SC (1990) Struct bonding (Berlin) 72:1

    Article  CAS  Google Scholar 

  3. Setzer WN, Cacioppo EL, Guo Q, Grant GJ, Kim DD, Hubbard JL, VanDerveer DG (1990) Inorg Chem 29:2672

    Article  CAS  Google Scholar 

  4. Blake AJ, Holder AJ, Hyde TI, Roberts YV, Lavery AJ, Schröder M (1987) J Organomet Chem 323:261

    Article  CAS  Google Scholar 

  5. Blake AJ, Holder AJ, Hyde TI, Schröder M (1987) J Chem Soc Chem Commun 987

  6. Grant GJ, Spangler NS, Setzer WN, VanDerveer DG (1996) Inorg Chim Acta 246:41

    Article  Google Scholar 

  7. Blake AJ, Holder AJ, Roberts YV, Schröder M (1990) Acta Crystallogr C 44:360

    Google Scholar 

  8. Bennett MA, Felixberger JK, Willis AC (1993) Gazz Chim Ital 123:405

    CAS  Google Scholar 

  9. Grant GJ, Brandow CG, Galas DF, Davis JP, Pennington WT, Zubkowski JD, Valente EJ (2001) Polyhedron 20:3333

    Article  CAS  Google Scholar 

  10. Lee G-H (1998) Acta Crystallogr C54:906

    CAS  Google Scholar 

  11. Blake AJ, Roberts YV, Schröder M (1996) J Chem Soc Dalton Trans 1885

  12. Grant GJ, Galas DF, Poullaos IM, Carter SM, VanDerveer DG (2002) J Chem Soc Dalton Trans 15:2973

    Article  Google Scholar 

  13. Grant GJ, Poullaos IM, Galas DF, VanDerveer DG, Zubkowski JD, Valente EJ (2001) Inorg Chem 40:564

    Article  CAS  Google Scholar 

  14. Grant GJ, Pool JP, VanDerveer DG (2003) J Chem Soc Dalton Trans 3981

  15. Bennett MA, Canty AJ, Felixberger JK, Rendina LM, Sunderland C, Willis AC (1993) Inorg Chem 32:1951

    Article  CAS  Google Scholar 

  16. Nikol H, Bürgi H-B, Hardcastle KI, Gray HB (1995) Inorg Chem 34:6319

    Article  CAS  Google Scholar 

  17. Grant GJ, Patel KN, Helm ML, Mehne LF, Klinger DW, VanDerveer DG (2004) Polyhedron 23:1361

    Article  CAS  Google Scholar 

  18. Janzen DE, VanDerveer DG, Mehne LF, da Dilva Fihlo AA, Bredas J-L, Grant GJ (2008) Dalton Trans 1872

  19. Green TW, Lieberman R, Mitchell N, Krause Bauer JA, Connick WB (2005) Inorg Chem 44:1955

    Article  CAS  Google Scholar 

  20. Janzen DE, Patel KN, VanDerveer DG, Grant GJ (2006) Chem Commun 3540

  21. Bedford RB, Betham M, Butts CP, Coles SJ, Hursthouse MB, Scully PN, Tucker JHR, Wilkie J, Willener Y (2008) Chem Commun 2429

  22. Janzen DE, Mehne LF, VanDerveer DG, Grant GJ (2005) Inorg Chem 44:8182

    Article  CAS  Google Scholar 

  23. Shin RYC, Goh CL, Goh LY, Webster RD, Li Y (2009) Eur J Inorg Chem 2282

  24. Chatterjee S, Krause JA, Connick WB, Genre C, Rodrigue-Withcel A, Reber C (2010) Inorg Chem 49:2808

    Article  CAS  Google Scholar 

  25. Pierce E, Lanthier E, Genre C, Chumakov Y, Luneau D, Reber C (2010) Inorg Chem 49:4901

    Article  CAS  Google Scholar 

  26. Wieghardt K, Küppers H-J, Raabe E, Krüger C (1996) Angew Chem Int Ed Engl 25:1101

    Article  Google Scholar 

  27. APEX2 Version 2.2, SAINT Version 7.34a (2007) Bruker AXS Inc

  28. SADABS Version (2007/2), XPREP Version (2005/2) (Sheldrick, Bruker AXS Inc)

  29. Sheldrick GM (2008) Acta Cryst A64:112–122 (XS Version 2008/1, XL Version 2008/1)

    Google Scholar 

  30. Grant GJ, Naik RD, Janzen DE, Benefield DA, VanDerveer DG (2010) Supramol Chem 22:109

    Article  CAS  Google Scholar 

  31. Cambridge Structural Database v 5.31, November, 2009 + Feb. 2010 and May 2010 updates; Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ. U.K

  32. Blake AJ, Gould RO, Holder TI, Lavery AJ, Odulate MO, Schröder M (1987) J Chem Soc Chem Commun 118

  33. Grant GJ, Chen W, Goforth AM, Baucom CL, Patel K, Repovic P, VanDerveer DG, Pennington WT (2005) Eur J Inorg Chem 479

Download references

Acknowledgments

This research was generously supported by grants from the Petroleum Research Fund, administered by the American Chemical Society, the Grote Chemistry Fund at the University of Tennessee at Chattanooga, and by the National Science Foundation, Research at Undergraduate Institutions Program. The assistance with aspects of the synthetic work by Mr. Keith Sanders and Ms. Melissa Brown from the Girls Preparatory School in Chattanooga is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, G.J., Benefield, D.A., Naik, R.D. et al. The Crystal Structure of {[Pt(9S3)Cl2]2[Pt(9S3)2]}Cl2·4H2O: An Improved Synthesis of [Pt(9S3)Cl2]. J Chem Crystallogr 41, 847–853 (2011). https://doi.org/10.1007/s10870-011-0011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0011-0

Keywords

Navigation