Skip to main content
Log in

Structural Features of Two Pyridyl Compounds of 1,5-Bis-(2′-pyridyl)pentane-1,3,5-trione and a New Salt of Doubly Protonated Hydroxyterpyridinium

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A keto-enol equilibrium between two tautomers of the 1,5-bis(2′-pyridyl)pentane-1,3,5-trione (trione) (1) was observed in solution based on 1H and 13C NMR spectroscopy. NMR data shows that the trione exists as a mixture of mono-(minor product) and bis-enolic (major product) forms in solution. However, the crystal structure of trione (1) indicates that the bis-enolic form is the predominant species in the solid state, which is probably due to the C=O⋯H–O intramolecular hydrogen bonding. The crystal structure of 1 was determined by X-ray diffraction analysis. Trione (1) is monoclinic and crystallizes in the space group P21/n with a = 3.7449(3) Å, b = 29.594(3) Å, c = 12.5148(12) Å, ß = 92.701(2)°. Notably, the chloride salt of doubly protonated 4′-hydroxy-2,2′:6′,2″-terpyridinium [H2(tpyOH)]Cl2·H2O (tpyOH = 4′-hydroxy-2,2′:6′,2″-terpyridine) (2) obtained during the reaction of tpyOH in the presence of CrCl3·6H2O as a Lewis acid in methanol rather than complexation. The crystal structure of [H2(tpyOH)]Cl2·H2O (2) is triclinic and crystallizes in the space group P\(\bar {1}\) with a = 5.1169(15) Å, b = 12.288(4) Å, c = 13.212(4) Å, α = 109.667(7)°, ß = 100.321(7)°, γ = 94.111(7)°. The crystal structure of 2 reveals the protonation of two nitrogen atoms of outer pyridines in tpyOH to form the [H2(tpyOH)]2+ cation. The packing of [H2tpyOH]Cl2·H2O features weak interactions including three N–H⋯Cl, O–H⋯Cl and O–H⋯O hydrogen bonds and extensive hydrogen bonds due to the cis–cis conformation of the doubly protonated salt of [H2tpyOH]2+ cation.

Graphical Abstract

Crystal structures of two pyridyl compounds of 1,5-bis-(2′-pyridyl)pentane-1,3,5-trione and doubly protonated 4′-hydroxy-2,2′:6′,2″-terpyridinium are reported which reveal the presence of hydrogen bonding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lowrey AH, George C, D’Antonio P, Karle J (1971) J Am Chem Soc 93:6399–6403

    Article  CAS  Google Scholar 

  2. Constable EC, Ward MD (1990) J Chem Soc Dalton Trans 1405–1409. https://doi.org/10.1039/DT9900001405

  3. Constable EC, Hermann BA, Housecroft CE, Neuburger M, Schaffner S, Scherer LJ (2005) New J Chem 29:1475–1481

    Article  CAS  Google Scholar 

  4. Momeni BZ, Jebraeil SM, Patrick BO, Abd-El-Aziz AS (2013) Polyhedron 55:184–191

    Article  CAS  Google Scholar 

  5. Hannon MJ, Painting CL, Plummer EA, Childs LJ, Alcock NW (2002) Chem Eur J 8:2225–2238

    Article  CAS  Google Scholar 

  6. Schmuck C, Wienand W (2001) Angew Chem Int Ed 40:4363–4369

    Article  CAS  Google Scholar 

  7. Bailey JA, Hill MG, Marsh RE, Miskowski VM, Schaefer WP, Gray HB (1995) Inorg Chem 34:4591–4599

    Article  CAS  Google Scholar 

  8. Hobert SE, Carney JT, Cummings SD (2001) Inorg Chim Acta 318:89–96

    Article  CAS  Google Scholar 

  9. Wang S, Chu W, Wang Y, Liu S, Zhang J, Li S, Wei H, Zhou G, Qin X (2013) Appl Organomet Chem 27:373–379

    Article  Google Scholar 

  10. Lowe G, Droz AS, Vilaivan T, Weaver GW, Park JJ, Pratt JM, Tweedale L, Kelland LR (1999) J Med Chem 42:3167–3174

    Article  CAS  Google Scholar 

  11. Abd-El-Aziz AS, Pilfold JL, Momeni BZ, Proud AJ, Pearson JK (2014) Polym Chem 5:3453–3465

    Article  CAS  Google Scholar 

  12. Hofmeier H, Hoogenboom R, Wouters MEL, Schubert US (2005) J Am Chem Soc 127:2913–2921

    Article  CAS  Google Scholar 

  13. Movassagh B, Yousefi A, Momeni BZ, Heydari S (2014) Synlett 25:1385–1390

    Article  Google Scholar 

  14. Nayak M, Koner R, Stoeckli-Evans H, Mohanta S (2005) Cryst Growth Des 5:1907–1912

    Article  CAS  Google Scholar 

  15. McMurtrie J, Dance I (2005) CrystEngComm 7:230–236

    Article  CAS  Google Scholar 

  16. Fernández-Moreira V, Thorp-Greenwood FL, Arthur RJ, Kariuki BM, Jenkins RL, Coogan MP (2010) Dalton Trans 39:7493–7503

    Article  Google Scholar 

  17. Momeni BZ, Heydari S (2015) Polyhedron 97:94–102

    Article  CAS  Google Scholar 

  18. Wang Y, Chen G, Han L, Pei J (2013) J Solid State Chem 206:251–256

    Article  CAS  Google Scholar 

  19. Jeitler JR, Turnbull MM (2005) Acta Crystallogr E61:m1846–m1848

    Google Scholar 

  20. Bazzicalupi C, Bencini A, Bianchi A, Danesi A, Faggi E, Giorgi C, Santarelli S, Valtancoli B (2008) Coord Chem Rev 252:1052–1068

    Article  CAS  Google Scholar 

  21. Hergold-Brundić A, Popović Z, Matković-Čalogović D (1996) Acta Crystallogr C52:3154–3157

    Google Scholar 

  22. Berthon C, Grigoriev MS (2005) Acta Crystallogr E61:o1216–o1217

    Google Scholar 

  23. Charushnikova IA, Auwer CD (2004) Russ J Coord Chem 30:511–519

    Article  CAS  Google Scholar 

  24. Beves JE, Constable EC, Housecroft CE, Neuburger M, Schaffner S, Zampese JA (2008) Inorg Chem Commun 11:1006–1008

    Article  CAS  Google Scholar 

  25. Beves JE, Constable EC, Housecroft CE, Neuburger M, Schaffner S (2008) Polyhedron 27:2395–2401

    Article  CAS  Google Scholar 

  26. Florio P, Coghlan CJ, Lin C-P, Saito K, Campi EM, Jackson WR, Hearn MTW (2014) Aust J Chem 67:651–656

    Article  CAS  Google Scholar 

  27. Huang W, Qian H (2007) J Mol Struct 832:108–116

    Article  CAS  Google Scholar 

  28. Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) J Am Chem Soc 135:3997–4006

    Article  CAS  Google Scholar 

  29. Schönle J, Constable EC, Housecroft CE, Neuburger M, Zampese JA (2015) Inorg Chem Commun 51:75–77

    Article  Google Scholar 

  30. Constable EC, Housecroft CE, Neuburger M, Schönle J, Zampese JA (2014) Dalton Trans 43:7227–7235

    Article  CAS  Google Scholar 

  31. Schönle J, Constable EC, Housecroft CE, Neuburger M (2015) Inorg Chem Commun 53:80–83

    Article  Google Scholar 

  32. Schönle J, Constable EC, Housecroft CE, Prescimone A, Zampese JA (2015) Polyhedron 89:182–188

    Article  Google Scholar 

  33. Sheldrick GM (2014) Bruker analytical x-ray-division, Madison, Wisconsin

  34. Sheldrick GM (2008) Acta Crystallogr A64:112–122

    Article  Google Scholar 

  35. Zalas M, Gierczyk B, Cegłowski M, Schroeder G (2012) Chem Pap 66:733–740

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Research Council of K. N. Toosi University of Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badri Z. Momeni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 103 KB)

Supplementary material 2 (PDF 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, B.Z., Fathi, N., Rahimi, F. et al. Structural Features of Two Pyridyl Compounds of 1,5-Bis-(2′-pyridyl)pentane-1,3,5-trione and a New Salt of Doubly Protonated Hydroxyterpyridinium. J Chem Crystallogr 50, 77–87 (2020). https://doi.org/10.1007/s10870-019-00774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00774-9

Keywords

Navigation