Skip to main content
Log in

Crystallographic Analyses of High-Z Value Structure of a Pyridinium–Carboxylate Complex

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Equimolar amounts of the proton acceptor 2-aminopyridine 1 and proton donor picolinic acid 2 were solvent-free grinded to give complex 5. X-ray diffraction was used to determine the crystal structure of the new complex 5 that found to be ionic, with proton transfer occurring to the aromatic nitrogen of the 2-aminopyridine moiety. Nonclassical hydrogen bonding exist in the solid state structure of 5, such as, 2-aminopyridine-carboxylic acid supramolecular heterosynthon was carefully investigated and compared to those exist in cocrystals in terms of supramolecular chemistry and crystal engineering. Complex 5 crystallizes in the monoclinic P2(1)/n space group with unit cell parameters of: a = 8.7714(12) Å, b = 12.1579(17) Å, c = 10.8546(15) Å, with α = 90°, β = 110.100(4)°, γ = 90°, and Z = 4.

Graphical Abstract

Equimolar amounts of the proton acceptor 2-aminopyridine 1 and proton donor picolinic acid 2 were solvent-free grinded to give complex 5. X-ray diffraction was used to determine the crystal structure of the new complex 5 that found to be ionic, with proton transfer occurring to the aromatic nitrogen of the 2-aminopyridine moiety. Nonclassical hydrogen bonding exist in the solid state structure of 5, such as, 2-aminopyridine-carboxylic acid supramolecular heterosynthon was carefully investigated and compared to those exist in cocrystals in terms of supramolecular chemistry and crystal engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mac Donald JC, Dorrestein PC, Pilley MM (2001) Crystallogr Growth Des 1(1):29

    Article  CAS  Google Scholar 

  2. Glaser R, Lewis M (1999) Org Lett 1(2):273

    Article  CAS  Google Scholar 

  3. Semo N, Osheroff MA, Koskl WSJ (1983) Phys Chem 87:2302

    Article  CAS  Google Scholar 

  4. Ramirez FHeJ, Lebrilla CB (1999) J Am Chem Sos 121:4726

    Article  Google Scholar 

  5. Tarkka RM, Zhang X, Jenekhe SA (1996) J Am Chem Soc 118:9438

    Article  CAS  Google Scholar 

  6. Nogami M, Diako Y, Akai T, Kasuga T (2001) J Phys Chem B105:4653

    Google Scholar 

  7. Ramezanipour F, Aghabozorg H, Shokrollahi A, Shamsipur M, Stoeckli-Evans H, Soleimannejad J, Sheshmani SJ (2005) Mol Struct 779:77

    Article  CAS  Google Scholar 

  8. Smith G, Wermuth UD, Healy PC (2006) J Chem Crystallogr 36(12):841

    Article  CAS  Google Scholar 

  9. Nishimura K, Khasanov SS, Saito G (2002) J Mater Chem 12:1693

    Article  CAS  Google Scholar 

  10. Aghabozorg H, Ramezanipour F, Nakhjavan B, Soleimannejad J, Gharamaleki JA, Sharif MA (2007) Cryst Res Technol 42(11):1137

    Article  CAS  Google Scholar 

  11. Moghimi A, Aghabozorg H, Sheshmani S, Kickelbick G, Soleimannejad (2005) J Anal Sci 21:141

    Google Scholar 

  12. Aghabozorg H, Saei AA, Ramezanipour F (2005) Acta Cryst E 61:o3242

    Google Scholar 

  13. Moghami A, Shokrollahi M, Shamsipur M, Aghabozorg H, Ranjbar M (2004) J Mol Struct 701:49

    Article  Google Scholar 

  14. Alshahateet SF (2010) J Chem Crystallogr 40:191

    Article  CAS  Google Scholar 

  15. Alshahateet SF (2010) J Chem Crystallogr. doi:10.1007/s10870-010-9872-x

  16. Alshahateet SF (2010) Mol Cryst Liquid Cryst 533:1

    Article  Google Scholar 

  17. Zaghal MH, Qaseer HA, El-Qisairi AK, Alshahateet SF, Shatnawi MY, Dawe LN (2009) J Chem Crystallogr 39:564

    Article  CAS  Google Scholar 

  18. Alshahateet SF, Bishop R, Craig DC, Scudder ML (2010) Cryst Growth Des 10:1842

    Article  CAS  Google Scholar 

  19. Alshahateet SF, Bishop R, Craig DC, Kooli F, Scudder ML (2008) CrystEngComm 10:297

    Article  CAS  Google Scholar 

  20. Alshahateet SF (2010) JJC 5(4):317

    CAS  Google Scholar 

  21. Alghezawi NM, Alshahateet SF, Bishop R (2010) JJC 5(3):211

    CAS  Google Scholar 

  22. Sekhon BS (2009) Ars Pharm 50(3):99

    Google Scholar 

  23. Reddy LS, Basavoju S, Vangala VR, Nangia A (2006) Cryst Growth Des 6(1):161

    Article  CAS  Google Scholar 

  24. Bis JA, Zaworotko MJ (2005) Cryst Growth Des 5(3):1169

    Article  CAS  Google Scholar 

  25. Stahly GP (2007) Cryst Growth Des 7:1007

    Article  CAS  Google Scholar 

  26. Tan T-F, Han J, Pang M-L, Song H-B, Ma Y-X, Meng J-B (2006) Cryst Growth Des 6(5):1186

    Article  CAS  Google Scholar 

  27. Siemens Energy and Automation, Inc (1996) SMART and SAINT software reference manuals, version 4.0. Analytical Instrumentation, Madison, WI

  28. Sheldrick M (1996) SADABS software for empirical absorption correction. University of Göttingen, Gottingen

    Google Scholar 

  29. Siemens Energy and Automation, Inc (1996) SHELXTL reference manuals, version 5.03. Analytical Instrumentation, Madison, WI

  30. Boenigk D, Mootz D (1988) J Am Chem Soc 110:2135

    Article  CAS  Google Scholar 

  31. Cowan JA, Howard JAK, Mclntyre GJ, Lo SM-F, Williams ID (2003) Acta Crystallogr B59:794

    CAS  Google Scholar 

  32. Bernstein J, Dunitz JD, Gavezzotti A (2008) Cryst Growth Des 8(6):2011

    Article  CAS  Google Scholar 

  33. Borthwick PW (1980) Acta Crystallogr B36:628

    CAS  Google Scholar 

  34. Bis JA, McLaughlin OL, Vishweshwar P, Zaworotko MJ (2006) Cryst Growth Des 6(12):2648

    Article  CAS  Google Scholar 

  35. Etter MC (1982) J Am Chem Soc 104:1095

    Article  CAS  Google Scholar 

  36. Etter MC (1991) J Phys Chem 95:4601

    Article  CAS  Google Scholar 

  37. Etter MC (1990) Acc Chem Res 23:120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mutah University for support needed to finish this work, Prof. Koh Lip Lin and Geok Kheng Tan from the National University of Singapore for their technical support and assistance. Many thanks are also due to Prof. M. J. Zaworotko (University of South Florida) for his great help and unlimited support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solhe F. Alshahateet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alshahateet, S.F., Alghezawi, N.M. Crystallographic Analyses of High-Z Value Structure of a Pyridinium–Carboxylate Complex. J Chem Crystallogr 41, 708–714 (2011). https://doi.org/10.1007/s10870-010-9958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-010-9958-5

Keywords

Navigation