Skip to main content
Log in

NH⋯O and NH⋯N Hydrogen Bonded Networks in Imidazole-Based Phosphane Oxides: Structures of Tris(2-Isopropylimidazol-4(5)-yl)Phosphane Oxide, Bis(2-Isopropylimidazol-4(5)-yl)Phosphane Oxide and Diphenyl-2-Isopropylimidazol-4(5)-yl Phosphane Oxide

  • ORIGINAL PAPER
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The three title compounds show extensive hydrogen bonding networks in the solid state. The structure of diphenyl-2-isopropylimidazol-4(5)yl phosphane oxide (3) is dominated by N–H⋯OP hydrogen bonds, whereas in bis(2-isopropylimidazol-4(5)-yl)phenyl- (2) and tris(2-isopropylimidazol-4(5)yl)phosphane oxide (1) both, N–H⋯N and N–H⋯OP hydrogen bonds determine the solid-state structures. Compound 1 crystallises in the monoclinic space group Cc with cell parameters a = 19.5447(6) Å, b = 10.45764(16) Å, c = 10.8549(3) Å and β = 121.418(4)°; 2 in the orthorhombic space group Pna21, with a = 11.5997(3) Å, b = 9.5836(2) Å, c = 16.1860(4) Å and 3 in the orthorhombic space group Pca21, with a = 10.8430(2) Å, b = 10.9277(2) Å and c = 27.7088(6) Å.

Graphical Abstract

Phosphane oxide compounds with isopropylimidazol-4(5)yl substituents show extensive hydrogen bonding networks in the solid state. The structure of diphenyl-2-isopropylimidazol-4(5)yl phosphane oxide is dominated by N–H⋯OP hydrogen bonds, whereas in bis(2-isopropylimidazol-4(5)-yl)phenyl- and tris(2-isopropylimidazol-4(5)yl)phosphane oxide both, N–H⋯N and N–H⋯OP hydrogen bonds determine the solid-state structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kunz PC, Zribi A, Frank W, Kläui W (2007) Z Anorg Allg Chem 633:955–960

    Article  CAS  Google Scholar 

  2. Kunz PC, Zribi A, Frank W, Kläui W (2007) Z Anorg Allg Chem 634:724–729

    Article  Google Scholar 

  3. Kunz PC, Kassack MU, Hamacher A, Spingler B (2009) Dalton Trans 7741–7747

  4. Bell R, Lock C, Scholten C, Valliant J (1998) Inorg Chim Acta 274:137–142

    Article  CAS  Google Scholar 

  5. Kunz PC, Huber W, Rojas A, Schatzschneider U, Spingler B (2009) Eur J Inorg Chem 5358–5366

  6. Kunz PC, Kläui W (2008) Collect Czech Chem Commun 72:492–502

    Article  Google Scholar 

  7. Kunz PC, Reiß GJ, Frank W, Kläui W (2003) Eur J Inorg Chem 3945–3951

  8. Tolmachev AA, Yurchenko AA, Merkulov AS, Semenova MG, Zarudnitskii EV, Ivanov VV, Pinchuk AM (1999) Heteroat Chem 10:585–597

    Article  CAS  Google Scholar 

  9. Oshovskii GV, Tolmachev AA, Yurchenko AA, Merkulov AS, Pinchuk AM (1999) Russ Chem Bull 48:1341–1347

    Article  CAS  Google Scholar 

  10. Strasser CE, Gabrielli WF, Schuster O, Nogai SD, Cronje S, Raubenheimer HG (2009) J Chem Crystallogr 39:478–483

    Article  CAS  Google Scholar 

  11. Yurchenko AA, Huryeva AN, Zarudnitskii EV, Marchenko AP, Koidan GN, Pinchuk AM (2009) Heteroat Chem 20:289–308

    Article  CAS  Google Scholar 

  12. CrysAlisPro (2007) Software system v 171.32. Oxford Diffraction Ltd., Oxford

    Google Scholar 

  13. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Cryst 32:115–119

    Article  CAS  Google Scholar 

  14. Sheldrick GM (2008) Acta Cryst A64:112–122

    CAS  Google Scholar 

  15. Spek AL (2003) J Appl Cryst 36:7–13

    Article  CAS  Google Scholar 

  16. Al-Farhan K (1992) J Crystallogr Spectrosc Res 22:687–689

    Article  CAS  Google Scholar 

  17. Héroux A, Brisse F (1997) Acta Cryst C53:1318–1320

    Google Scholar 

  18. Lariucci C (1986) Acta Cryst C42:1825–1828

    CAS  Google Scholar 

  19. Ziemer B, Rabis A, Steinberger H (2000) Acta Cryst C56:e58–e59

    CAS  Google Scholar 

  20. Dunne B, Orpen A (1991) Acta Cryst C47:345–347

    CAS  Google Scholar 

  21. Dance I, Scudder M (1995) J Chem Soc Chem Commun 1039–1040

  22. Etter MC, MacDonald JC (1990) Acta Cryst B46:256–262

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Kunz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunz, P.C., Huber, W. & Spingler, B. NH⋯O and NH⋯N Hydrogen Bonded Networks in Imidazole-Based Phosphane Oxides: Structures of Tris(2-Isopropylimidazol-4(5)-yl)Phosphane Oxide, Bis(2-Isopropylimidazol-4(5)-yl)Phosphane Oxide and Diphenyl-2-Isopropylimidazol-4(5)-yl Phosphane Oxide. J Chem Crystallogr 41, 105–110 (2011). https://doi.org/10.1007/s10870-010-9845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-010-9845-0

Keywords

Navigation