Skip to main content
Log in

Crystal Structure of 2-Thiophenecarboxamide: A One-dimensional Tubular Structure Formed by N–H···O Hydrogen Bonds

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structure of 2-thoiphenecarboxamide is described. The compound crystallizes in the orthorhombic Pna21 space group with unit cell parameters a = 10.044 (3) Å, b = 14.203 (4) Å and c = 15.941 (3) Å; V = 2,274.1 (10) Å3. The asymmetric unit contains four independent molecules which are linked by N–H···O hydrogen bonds. The asymmetric unit at (x, y, z) is connected with another one, produced by the a-glide plane at 0.75 along the b-axis, that lies at (x + 0.5, −y + 1.5, z) by two N–H···O hydrogen bonds and by a C–H···O weak hydrogen bond to form a one-dimensional tube. Adjacent tubes are linked by C–H···pi interactions to form a three-dimensional framework.

Graphical Abstract

The crystal structure of 2-thiophenecarboxamide, contains four crystallographically independent molecular components in the asymmetric unit linked by four N–H···O hydrogen bonds and a weak C–H···O hydrogen bond and form a one-dimensional tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baxter A, Brough S, Cooper A, Floettmann E, Foster S, Harding C, Kettle J, Xue Y (2004) Bioorg Med Chem Lett 14:2817–2822

    Article  CAS  Google Scholar 

  2. Birrell MA, Wong S, Hardaker EL, Catley MC, McCluskie K, Collins M, Haj-Yahia S, Belvisi MG (2006) Mol Pharmacol 69(6):1791–1800. doi:10.1124/mol.105.019521

    Article  CAS  Google Scholar 

  3. Yonetoku Y, Kubota H, Okamoto Y, Toyoshima A, Funatsu M, Ishikawa J, Takeuchi M, Tsukamoto S (2006) Bioorg Med Chem 14(14):4750–4760. doi:10.1016/j.bmc.2006.03.024

    Article  CAS  Google Scholar 

  4. Norman MH, Navas F, Thompson JB, Rigdon GC (1996) J Med Chem 39(24):4692–4703. doi:10.1021/jm9603375

    Article  CAS  Google Scholar 

  5. Rowbottom MW, Vickers TD, Dyck B, Tamiya J, Zhang M, Zhao L, Grey J, Goodfellow VS (2005) Bioorg Med Chem Lett 15(14):3439–3445. doi:10.1016/j.bmcl.2005.05.015

    Article  CAS  Google Scholar 

  6. Pillai AD, Rathod PD, Franklin PX, Padh H, Rani S, Vasu KK, Sudarsanam V (2004) Biochem Biophys Res Commun 317:1067–1074. doi:10.1016/j.bbrc.2004.03.148

    Article  CAS  Google Scholar 

  7. Pillai AD, Rani S, Rathod PD, Xavier FP, Vasu KK, Padh H, Sudarsanam V (2005) Bioorg Med Chem 13:1275–1283. doi:10.1016/j.bmc.2004.11.016

    Article  CAS  Google Scholar 

  8. Ribeiro da Silva MAV, Monteiro IMM, Santos LMNBF, Schröder B (2007) J Chem Thermodyn 39(5):767–772. doi:10.1016/j.jct.2006.10.006

    Article  CAS  Google Scholar 

  9. Palmore GTR, Mc Donald JC (2000) In: Greenberg A, Breneman CM, Liebman JF (eds) The amide linkage: selected structural aspects in Chemistry, biochemistry and structural science. Wiley, Chichester, pp 291–336

    Google Scholar 

  10. Allen FH, Motherwell SWD, Raithby PR, Shields GP, Taylor R (1999) N J Chem 23:25–34. doi:10.1039/a807212d

    Article  CAS  Google Scholar 

  11. Cambridge Structural database—refcode: BZAMIC. Penfold BR, White JCB (1959) Acta Cryst 12:130–135

    Google Scholar 

  12. Rauf MK, Badshah A, Bolte M, Saeed A (2006) Acta Crystallogr E62:o1070–o1071

    CAS  Google Scholar 

  13. Bourne N, Williams A, Douglas KT, Penkava TR (1984) J Chem Soc, Perkin Trans 2:1827–1832. doi:10.1039/p29840001827

    Google Scholar 

  14. Sturini M, Fasani E, Prandi C, Casaschi A, Albini A (1996) J Photochem Photobiol Chem 101:251–255. doi:10.1016/S1010-6030(96)04408-5

    Article  CAS  Google Scholar 

  15. Vidal A, Luengo MA (2001) Appl Catal Environ 32:1–6. doi:10.1016/S0926-3373(01)00124-2

    Article  CAS  Google Scholar 

  16. Bruker-Nonius BV (2004) Collect. Bruker-Nonius BV, Delft, The Netherlands

    Google Scholar 

  17. Duisenberg AJM, Hooft RWW, Schreurs AMM, Kroon J (2000) J Appl Cryst 33:893–898. doi:10.1107/S0021889800002363

    Article  CAS  Google Scholar 

  18. Duisenberg AJM, Kroon-Batenburg LMJ, Schreurs AMM (2003) J Appl Cryst 36:220–229. doi:10.1107/S0021889802022628

    Article  CAS  Google Scholar 

  19. Sheldrick GM (2003) SADABS—Bruker Nonius area detector scaling and absorption correction—V2.10

  20. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Spagna R (2005) SIR2004; an improved tool for structure determination and refinement. J Appl Cryst 38:381–388. doi:10.1107/S002188980403225X

    Article  CAS  Google Scholar 

  21. Farrugia LJ (1999) J Appl Cryst 32:837–838. doi:10.1107/S0021889899006020

    Article  Google Scholar 

  22. McArdle P (2003) OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland

  23. Sheldrick GM (1997) SHELXS97 and SHELXL97. Program for crystal structure refinement. University of Göttingen, Germany

    Google Scholar 

  24. Flack HD (1983) Acta Crystallogr A 39:876–881. doi:10.1107/S0108767383001762

    Article  Google Scholar 

  25. Johnson CK (1976) ORTEP—A fortran thermal ellipsoid plot program, technical report ORNL-5138. Oak Ridge National Laboratory, USA

  26. Spek AL (2003) J Appl Cryst 36:3–17. doi:10.1107/S0021889802022112

    Article  Google Scholar 

  27. Aakeröy CB, Scott BMT, Desper J (2007) N J Chem 31:2044–2051. doi:10.1039/b715610c

    Article  Google Scholar 

  28. Bernstein J, Davis RE, Shimoni I, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555–1573. doi:10.1002/anie.199515551

    Article  CAS  Google Scholar 

  29. Zhang B-Y, Yang Q, Nie J-J (2008) Acta Crystallogr E64:o105

    CAS  Google Scholar 

  30. Zhang M-H, Zheng S-L, Zhou J, Liu S-Y, Zhao Z-G (2005) Acta Crystallogr E61:o3568–o3570

    CAS  Google Scholar 

  31. Torre JM, Nogueras M, Cobo J, Low JN, Glidewell C (2006) Acta Crystallogr C 62:o256–o258. doi:10.1107/S0108270106008663

    Article  Google Scholar 

  32. Dey R, Banerjee T, Langer V, Ray S, Roychowdhury P (2006) Acta Cryst E62:0814–0816

    Google Scholar 

Download references

Acknowledgments

Authors thank “Servicios Técnicos de Investigacion of Universidad de Jaén and the staff for data collection. The authors also thank Dr. Manuel Melguizo and Dr. Christopher Glidewell for helpful discussion and advice. BS thanks FCT and the European Social Fund (ESF) under the third Community Support Framework (CSF) for the award of a Ph.D. Research Grant (SFRH/BPD/38637/2007). Thanks are also due to FCT for financial support for Project POCI/QUI/61873/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligia R. Gomes.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, J.N., Quesada, A., Santos, L.M.N.B.F. et al. Crystal Structure of 2-Thiophenecarboxamide: A One-dimensional Tubular Structure Formed by N–H···O Hydrogen Bonds. J Chem Crystallogr 39, 747–752 (2009). https://doi.org/10.1007/s10870-009-9564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9564-6

Keywords

Navigation