Skip to main content
Log in

Automatic classification of seizure and seizure-free EEG signals based on phase space reconstruction features

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Epilepsy is a type of brain disorder triggered by an abrupt electrical imbalance of neuronal networks. An electroencephalogram (EEG) is a diagnostic tool to capture the underlying brain mechanisms and detect seizure onset in epileptic patients. To detect seizures, neurologists need to manually monitor EEG recordings for long periods, which is challenging and susceptible to errors depending on expertise and experience. Therefore, automatic identification of seizure and seizure-free EEG signals becomes essential. This study introduces a method based on the features extracted from the phase space reconstruction for classifying seizure and seizure-free EEG signals. The computed features are derived from the elliptical area and interquartile range of the Euclidean distance by varying percentage values of data points ranging from 50 to 100%. We consider two public datasets and evaluate these features in each EEG epoch that includes the healthy, interictal, preictal, and ictal stages of epileptic subjects, utilizing the K-nearest neighbor classifier for classification. Results show that the features have higher values during the seizure than the seizure-free EEG signals and healthy subjects. Furthermore, the proposed features can effectively discriminate seizure EEG signals from the seizure-free and normal subjects with 100% accuracy, sensitivity, and specificity in both datasets. Likewise, the classification between the preictal stage and seizure EEG signals attains 98% accuracy. Overall, the reconstructed phase space features significantly enhance the accuracy of detecting epileptic EEG signals compared with existing methods. This advancement holds great potential in assisting neurologists in swiftly and accurately diagnosing epileptic seizures from EEG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Material and/or code availability

The EEG data for this study was obtained from an open-source EEG database from the University of Bonn and Neurology and Sleep Centre of Hauz Khas, New Delhi.

References

  1. Amudhan, S., Gopalkrishna, G., Parthasarathy, S.: Epilepsy in India I: Epidemiology and public health. Ann. Indian Acad. Neurol. 18(3), 263–277 (2015). https://doi.org/10.4103/2F0972-2327.160093

  2. Sukriti, Chakraborty, M., Debjani, M.: Automated detection of epileptic seizures using multiscale and refined composite multiscale dispersion entropy. Chaos Solitons Fractals 146, 110939 (2021). https://doi.org/10.1016/j.chaos.2021.110939

  3. Zhang, T., Wanzhong, C.: LMD based features for the automatic seizure detection of EEG signals using SVM. IEEE Trans. Neural Syst. Rehab. Eng. 25(8), 1100–1108 (2016). https://doi.org/10.1109/TNSRE.2016.2611601

    Article  Google Scholar 

  4. Joshi, V., Pachori, R.B., Vijesh, A.: Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Control 9, 1–5 (2014). https://doi.org/10.1016/j.bspc.2013.08.006

    Article  Google Scholar 

  5. Ghosh, D.S., Hojjat, A., Nahid, D.: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2), 512–518 (2008). https://doi.org/10.1109/TBME.2007.905490

    Article  Google Scholar 

  6. Zandi, A.S., Javidan, M., Dumont, G.A., Tafreshi, R.: Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform. IEEE Trans. Biomed. Eng. 57(7), 1639–1651 (2010). https://doi.org/10.1109/TBME.2010.2046417

    Article  PubMed  Google Scholar 

  7. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007). https://doi.org/10.1016/j.eswa.2006.02.005

    Article  Google Scholar 

  8. Acharya, U.R., Ratna, Y., Jia, W.Z., Muthu, R.K., Jen, H.T., Roshan, J.M., Choo, M.L.: Automated diagnosis of epilepsy using CWT, HOS and texture parameters. Int. J. Neural Syst. 23(3), 1350009 (2013). https://doi.org/10.1142/s0129065713500093

    Article  PubMed  Google Scholar 

  9. Srinivasan, V., Chikkannan, E., Natarajan, S.: Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE J. Biomed. Health Inform. 11(3), 288–295 (2007). https://doi.org/10.1109/titb.2006.884369

    Article  Google Scholar 

  10. Ubeyli, E.D.: Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Syst. Appl. 37(2), 985–992 (2010). https://doi.org/10.1016/j.eswa.2009.05.078

    Article  Google Scholar 

  11. Acharya, U.R., Chua, K.C., Lim, T.-K., Tay, D., Suri, J.: Automatic identification of epileptic EEG signals using nonlinear parameters. J. Mech. Med. Biol. 9(4), 539–553 (2009). https://doi.org/10.1142/S0219519409003152

  12. Jirka, J., Prauzek, M., Krejcar, O., Kuca, K.: Automatic epilepsy detection using fractal dimensions segmentation and GP–SVM classification. Neuropsychiatr. Dis. Treat. 2018, 2439–2449 (2018). https://doi.org/10.2147/2FNDT.S167841

  13. Guler, N.F., Elif, D.U., Inan, G.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert. Syst. Appl. 29(3), 506–514 (2005). https://doi.org/10.1016/j.eswa.2005.04.011

    Article  Google Scholar 

  14. Peng, G., Nourani, M., Harvey, J., Dave, H.: Feature selection using f-statistic values for EEG signal analysis. Int. Conf. of the IEEE EMBC. 5963–5966 (2020). https://doi.org/10.1109/EMBC44109.2020.9176434

  15. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 454(1971), 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  Google Scholar 

  16. Pachori, R.B.: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. J. Electr. Comput. Eng 2008, (2008). https://doi.org/10.1155/2008/293056

  17. Pachori, R.B., Bajaj, V.: Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput. Methods Programs Biomed. 104(3), 373–381 (2011). https://doi.org/10.1016/j.cmpb.2011.03.009

    Article  PubMed  Google Scholar 

  18. Lu, X., Zhang, J.-Q., Huang, S.-F., Lu, J., Ye, M.-Q., Wang, M.-S.: Detection and classification of epileptic EEG signals by the methods of nonlinear dynamics. Chaos Solitons Fractals 151, 111032 (2021).https://doi.org/10.1016/j.chaos.2021.111032

  19. Sharma, R., Pachori, R.B.: Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 42(3), 1106–1117 (2015). https://doi.org/10.1016/j.eswa.2014.08.030

    Article  Google Scholar 

  20. Lee, S.H., Joon, S.L., Jae, K.K., Junggi, Y., Youngho, L.: Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Comput. Methods Programs Biomed. 116(1), 10–25 (2014). https://doi.org/10.1016/j.cmpb.2014.04.012

    Article  PubMed  Google Scholar 

  21. Khan, S.I., Saeed, M.Q., Pachori, R.B.: Automated classification of valvular heart diseases using FBSE-EWT and PSR based geometrical features. Biomed. Signal Process. Control 73,(2022)

    Article  Google Scholar 

  22. Akbari, H., Muhammad, T.S., Rehman, A.U., Mahdieh, G., Rizwan, A.N., Malih, P., Hourieh, B., Hamed, B.: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features. Appl. Acoust. 179,(2021)

    Article  Google Scholar 

  23. Swami, P., Panigrahi, B., Nara, S., Bhatia, M., Gandhi, T.: EEG epilepsy datasets. (2016). https://doi.org/10.13140/RG.2.2.14280.32006

  24. Andrzejak, R.G., Lehnertz, K., Mormann, F., Reike, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(6),(2001)

    Article  ADS  CAS  Google Scholar 

  25. Teplan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002). http://www.edumed.org.br/cursos/neurociencia/MethodsEEGMeasurement.pdf

  26. Peng, G., Nourani, M., Harvey, J., Dave, H.: Personalized feature selection for wearable EEG monitoring platform. IEEE Int. Conf. Bioinf. Bioen. (BIBE) 380–386 (2020). https://doi.org/10.1109/BIBE50027.2020.00069

  27. Takens, F.: Detecting strange attractors in turbulence. Dynamic Syst Turbulence Warwick. 1980(898), 366–381 (1981). https://doi.org/10.1007/BFb0091924

    Article  MathSciNet  Google Scholar 

  28. Tsipouras, M.G.: Spectral information of EEG signals with respect to epilepsy classification. EURASIP J. Adv. Signal. Process. 2019(1), 1–17 (2019). https://doi.org/10.1186/s13634-019-0606-8

    Article  ADS  Google Scholar 

  29. Gupta, A., Pushpendra, S., Mandar, K.: A novel signal modeling approach for classification of seizure and seizure-free EEG signals. IEEE Trans. Neural Syst. Rehab. Eng. 26(5), 925–935 (2018). https://doi.org/10.1109/TNSRE.2018.2818123

    Article  Google Scholar 

  30. Sharma, M., Ankit, A.B., Acharya, U.R.: MMSFL-OWFB: a novel class of orthogonal wavelet filters for epileptic seizure detection. Knowl. Based Syst. 160, 265–277 (2018). https://doi.org/10.1016/j.knosys.2018.07.019

    Article  Google Scholar 

  31. Li, Y., Wei, G.C., Hui, H., Yu, Z.G., Ke, L., Tao, T.: Epileptic seizure detection in EEG signals using sparse multiscale radial basis function networks and the Fisher vector approach. Knowl. Based Syst. 164, 96–106 (2019). https://doi.org/10.1016/j.knosys.2018.10.029

    Article  Google Scholar 

  32. Tajmirriahi, M., Amini, Z.: Modeling of seizure and seizure-free EEG signals based on stochastic differential equations. Chaos Solitons Fractals 150, 111104 (2021). https://doi.org/10.1016/j.chaos.2021.111104

    Article  MathSciNet  Google Scholar 

  33. Diykh, M., Yan, L., Peng, W.: Classify epileptic EEG signals using weighted complex networks based community structure detection. Expert Syst. Appl. 90, 87–100 (2017). https://doi.org/10.1016/j.eswa.2017.08.012

    Article  Google Scholar 

  34. Ilakiyaselvan, N., Khan, A.N., Shahina, A.: Deep learning approach to detect seizure using reconstructed phase space images. J. Biomed. Res. 34(3), 240–250 (2020). https://doi.org/10.7555/2FJBR.34.20190043

  35. Kaya, Y., Omer, F.E.: A stable feature extraction method in classification epileptic EEG signals. Australas. Phys. Eng. Sci. Med. 41, 721–730 (2018). https://doi.org/10.1007/s13246-018-0669-0

    Article  PubMed  Google Scholar 

  36. Raghu, S., Sriraam, N., Hegde, A.S., Kubben, P.L.: A novel approach for classification of epileptic seizures using matrix determinant. Expert Syst. Appl. 127, 323–341 (2019). https://doi.org/10.1016/j.eswa.2019.03.021

    Article  Google Scholar 

Download references

Acknowledgements

The author Shervin Skaria wishes to acknowledge Mahatma Gandhi University, Kerala, India, for providing fellowship for the research program. The authors also wish to thank the Neurology and Sleep Centre of Hauz Khas, New Delhi, and the University of Bonn for providing the EEG data for the present study.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: Shervin Skaria conducts the preliminary investigation, data analysis, methodology, programming, interprets the results, prepares the figures, and writes the original manuscript. Sreelatha K.S supervised, reviewed, and edited the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Sreelatha Karyaveetil Savithriamma.

Ethics declarations

Ethics approval and consent to participate

Not required.

Research involving human participants and/or animals

The article contains no studies with human participants performed by the authors.

Informed consent

This study was conducted on a Python, requiring no participation consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skaria, S., Savithriamma, S.K. Automatic classification of seizure and seizure-free EEG signals based on phase space reconstruction features. J Biol Phys (2024). https://doi.org/10.1007/s10867-024-09654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10867-024-09654-6

Keywords

Navigation