Skip to main content

Advertisement

Log in

Automatic identification of epileptic seizures using volume of phase space representation

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Epilepsy is a neurological disorder that affects people of any age, which can be detected by Electroencephalogram (EEG) signals. This paper proposes a novel method called Volume of Phase Space Representation (VOPSR) to classify seizure and seizure-free EEG signals automatically. Primarily, the recorded EEG signal is disintegrated into several Intrinsic Mode Functions (IMFs) using the Empirical Mode Decomposition (EMD) method and the three-dimensional phase space have been reconstructed for the obtained IMFs. The volume is measured for the obtained 3D-PSR for different IMFs called VOPSR, which is used as a feature set for the classification of Epileptic seizure EEG signals. Support vector machine (SVM) is used as a classifier for the classification of epileptic and epileptic-free EEG signals. The classification performance of the proposed method is evaluated under different kernels such as Linear, Polynomial and Radial Basis Function (RBF) kernels. Finally, the proposed method outperforms noteworthy state-of-the-art classification methods in the context of epileptic EEG signals, achieving 99.13% accuracy (average) with the Linear, Polynomial, and RBF kernels. The proposed technique can be used to detect epilepsy from the EEG signals automatically without human intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130(2):314–333

    Article  PubMed  Google Scholar 

  2. Ray GC (1994) An algorithm to separate non stationary part of a signal using mid-prediction filter. IEEE Trans Signal Process 42(9):2276–2279

    Article  Google Scholar 

  3. Mukhopadhyay S, Ray GC (1998) A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans Biomed Eng 45(2):180–187

    Article  CAS  PubMed  Google Scholar 

  4. Iasemidis LD et al (2003) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627

    Article  PubMed  Google Scholar 

  5. Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS (2013) Automated EEG analysis of epilepsy: a review. Knowl-Based Syst 45:147–165

    Article  Google Scholar 

  6. Altunay S, Telatar Z, Erogul O (2010) Epileptic EEG detection using the linear prediction error energy. Expert Syst Appl 37(8):5661–5665

    Article  Google Scholar 

  7. Joshi V, Pachori RB, Vijesh A (2014) Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control 9:1–5

    Article  Google Scholar 

  8. Srinivasan V, Eswaran C, Sriraam N (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features. J Med Syst 29(6):647–660

    Article  CAS  PubMed  Google Scholar 

  9. Polat K, Günes S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187(2):1017–1026

    Google Scholar 

  10. Tzallas AT, Tsipouras MG, Fotidis DI (2007) Automatic seizure detection based on time–frequency analysis and artificial neural networks. Comput Intell Neurosci 2007:13. Article ID 80510

  11. Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Trans Inf Technol Biomed 13(5):703–710

    Article  PubMed  Google Scholar 

  12. Guo L, Rivero D, Pazos A (2010) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193(1):156–163

    Article  PubMed  Google Scholar 

  13. Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123(1):69–87

    Article  PubMed  Google Scholar 

  14. Khan YU, Gotman J (2003) Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin Neurophysiol 114(5):898–908

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh-Dastidar S, Adeli H, Dadmehr N (2007) Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 54(9):1545–1551

    Article  PubMed  Google Scholar 

  16. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027–2036

    Article  Google Scholar 

  17. Adeli H, Ghosh-Dastidar S, Dadmehr N (2007) A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 54(2):205–211

    Article  PubMed  Google Scholar 

  18. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093

    Article  Google Scholar 

  19. Uthayakumar R, Easwaramoorthy D (2013) Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals 21(2):1350011

    Article  Google Scholar 

  20. Lee S-H, Lim JS, Kim J-K, Yang J, Lee Y (2014) Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Comput Methods Programs Biomed 116:10–25

    Article  PubMed  Google Scholar 

  21. Güler NF, Übeyli ED, Güler I (2005) Recurrent neural networks employing Lyapunov exponents for EEG signal classification. Expert Syst Appl 29(3):506–514

    Article  Google Scholar 

  22. Übeyli ED (2010) Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Syst Appl 37(2):985–992

    Article  Google Scholar 

  23. Lehnertz K, Elger CE (1995) Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr Clin Neurophysiol 95(2):108–117

    Article  CAS  PubMed  Google Scholar 

  24. Accardo A, Affinito M, Carrozzi M, Bouquet F (1997) Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cybern 77(5):339–350

    Article  CAS  PubMed  Google Scholar 

  25. Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 11(3):288–295

    Article  PubMed  Google Scholar 

  26. Liang SF, Wang HC, Chang WL (2010) Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J Adv Signal Process 2010:15. Article ID 853434

  27. Liang S-F, Wang H-C, Chang W-L (2010) Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J Adv Signal Process 2010:853434

    Article  Google Scholar 

  28. Pachori RB (2008) Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res Lett Signal Process 2008:5. Article ID 293056

  29. Oweis RJ, Abdulhay EW (2011) Seizure classification in EEG signals utilizing Hilbert–Huang transform. Bio Med Eng Online 10:38

    Article  Google Scholar 

  30. Pachori RB, Bajaj V (2011) Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput Methods Programs Biomed 104(3):373–381

    Article  PubMed  Google Scholar 

  31. Bajaj V, Pachori RB (2011) EEG signal classification using empirical mode decomposition and support vector machine. In: Proceedings international conference on soft computing for problem solving, AISC 131, 20–22 December, 2011, Roorkee, India, pp 623–635

  32. Li S et al (2013) Feature extraction and recognition of ictal EEG using EMD and SVM. Comput Biol Med 43(7):807–816

    Article  PubMed  Google Scholar 

  33. Bajaj V, Pachori RB (2013) Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomed Eng Lett 3(1):17–21

    Article  Google Scholar 

  34. Bajaj V, Pachori RB (2012) Classification of seizure and non- seizure EEG signals using empirical mode decomposition. IEEE Trans Inf Technol Biomed 16(6):1135–1142

    Article  PubMed  Google Scholar 

  35. Ur Rehman N, Xia Y, Mandic DP (2010) Application of multivaritate empirical mode decomposition for seizure detection in EEG signals. In: Proceedings annual international conference of IEEE Engineering in Medicine and Biology Society, August 31, 2010–September 04, 2010, Buenos Aires, Argentina, pp 1650–1653

  36. Pachori RB, Patidar S (2014) Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput Methods Programs Biomed 113:494–502

    Article  PubMed  Google Scholar 

  37. Pachori RB, Sharma R (2015) Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst Appl 42:1106–1117

    Article  Google Scholar 

  38. Bhati D, Pachori RB, Gadre VM (2017) A novel approach for time-frequency localization of scaling functions and design of three-band biorthogonal linear phase wavelet filter banks. Digit Signal Process 69:302–322

    Article  Google Scholar 

  39. Bhati D, Sharma M, Pachori RB, Gadre VM (2017) Time-frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification. Digit Signal Process 62:259–273

    Article  Google Scholar 

  40. Bhati D, Pachori RB, Sharma M, Gadre VM (2019) Automated detection of seizure and nonseizure EEG signals using two band biorthogonal wavelet filter banks. In: Naik GR (ed) Biomedical signal processing-advances in theory, algorithms and applications. Springer, Singapore, pp 137–155. https://doi.org/10.1007/978-981-13-9097-5_7

    Chapter  Google Scholar 

  41. Bhati D, Pachori RB, Gadre VM (2018) Design of time-frequency localized two-band orthogonal wavelet filter banks. Circuits Syst Signal Process 37(08):3295–3312

    Article  Google Scholar 

  42. Huang NE et al (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary timeseries analysis. Proc R Soc Lond A 454:903–995

    Article  Google Scholar 

  43. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L-S (eds) Dynamical systemsand turbulence, Warwick 1980. Lecture notes in mathematics. Springer, pp 366–381

  44. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of non-linear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64:061907

    Article  CAS  Google Scholar 

  45. Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst Appl 39:202–209

    Article  Google Scholar 

  46. Zhu G, Li Y, Wen PP (2014) Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm. Comput Methods Programs Biomed 115:64–75

    Article  PubMed  Google Scholar 

  47. Siuly, Li Y, Wen P (2011) Clustering technique-based least square support vector machine for EEG signal classification. Comput Methods Programs Biomed 104(3):358–372

    Article  CAS  PubMed  Google Scholar 

  48. Bao FS, Lie DYC, Zhang Y (2008) A new approach to automated epileptic diagnosis using EEG and probabilistic neural network. In: Proceedings of IEEE international conference on tools with artificial intelligence, pp 482–486

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Krishnaprasanna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaprasanna, R., Vijaya Baskar, V. & Panneerselvam, J. Automatic identification of epileptic seizures using volume of phase space representation. Phys Eng Sci Med 44, 545–556 (2021). https://doi.org/10.1007/s13246-021-01006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-021-01006-1

Keywords

Navigation