Skip to main content

Advertisement

Log in

Roles of astrocytes and prions in Alzheimer’s disease: insights from mathematical modeling

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We present a mathematical model that explores the progression of Alzheimer’s disease, with a particular focus on the involvement of disease-related proteins and astrocytes. Our model consists of a coupled system of differential equations that delineates the dynamics of amyloid beta plaques, amyloid beta protein, tau protein, and astrocytes. Amyloid beta plaques can be considered fibrils that depend on both the plaque size and time. We change our mathematical model to a temporal system by applying an integration operation with respect to the plaque size. Theoretical analysis including existence, uniqueness, positivity, and boundedness is performed in our model. We extend our mathematical model by adding two populations, namely prion protein and amyloid beta-prion complex. We characterize the system dynamics by locating biologically feasible steady states and their local stability analysis for both models. The characterization of the proposed model can help inform in advancing our understanding of the development of Alzheimer’s disease as well as its complicated dynamics. We investigate the global stability analysis around the interior equilibrium point by constructing a suitable Lyapunov function. We validate our theoretical analysis with the aid of extensive numerical illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availibility

All the used data are included in the manuscript.

References

  1. US Department of Health and Human Services.: What happens to the brain in Alzheimer’s disease. National Institute on Aging (2017)

  2. Alzheimer’s Disease Facts and Figures.: Alzheimer’s Association. Alzheimers Dement. 19(4) (2023). https://doi.org/10.1002/alz.13016

  3. DeTure, M.A., Dickson, D.W.: The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14(1), 1–18 (2019)

    Article  Google Scholar 

  4. Schachter, A.S., Davis, K.L.: Alzheimer’s disease. Dialogues Clin. Neurosci (2022)

    Google Scholar 

  5. Helal, M., Hingant, E., Pujo-Menjouet, L., Webb, G.F.: Alzheimer’s disease: analysis of a mathematical model incorporating the role of prions. J. Math. Biol. 69(5), 1207–1235 (2014)

    Article  MathSciNet  Google Scholar 

  6. Hao, W., Friedman, A.: Mathematical model on Alzheimer’s disease. BMC Syst. Biol. 10(1), 1–18 (2016)

    Article  Google Scholar 

  7. Pal, S., Melnik, R.: Nonlocal models in the analysis of brain neurodegenerative protein dynamics with application to Alzheimer’s disease. Sci. Rep. 12(1), 7328 (2022)

    Article  ADS  Google Scholar 

  8. Thompson, T.B., Chaggar, P., Kuhl, E., Goriely, A., Alzheimer’s disease neuroimaging initiative: Protein-protein interactions in neurodegenerative diseases: a conspiracy theory. PLoS Comput. Biol. 16(10), e1008267 (2020)

  9. Kyrtsos, C.R., Baras, J.S.: A graph theoretic mathematical model for Alzheimer’s disease: using a systems biology approach. In 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE). 472–477 (2012)

  10. Jain, A., Roy, P.: Obesity and Alzheimer’s: an attempt to decipher the role of obesity in blood-brain barrier degradation. Chaos Solit. Fractals 166,(2023)

  11. Puri, I.K., Li, L.: Mathematical modeling for the pathogenesis of Alzheimer’s disease. PloS ONE 5(12),(2010)

  12. Hao, W., Lenhart, S., Petrella, J.R.: Optimal anti-amyloid-beta therapy for Alzheimer’s disease via a personalized mathematical model. PLoS Comput. Biol. 18(9), (2022)

  13. Lindstrom, M.R., Chavez, M.B., Gross-Sable, E.A., Hayden, E.Y., Teplow, D.B.: From reaction kinetics to dementia: a simple dimer model of Alzheimer’s disease etiology. PLoS Comput. Biol. 17(7), (2021)

  14. Sehar, U., Rawat, P., Reddy, A.P., Kopel, J., Reddy, P.H.: Amyloid beta in aging and Alzheimer’s disease. Int. J. Mol. Sci. 23(21), 12924 (2022)

    Article  Google Scholar 

  15. Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S.H., Villemagne, V.L., Aisen, P., Vendruscolo, M., Iwatsubo, T., Masters, C.L.: The amyloid-\(\beta\) pathway in Alzheimer’s disease. Mol. Psychiatry 26(10), 5481–5503 (2021)

  16. Adimy, M., Pujo-Menjouet, L.: Asymptotic behavior of a singular transport equation modelling cell division. Dyn. Syst. Ser. B 3(3), 439–456 (2003)

    MathSciNet  Google Scholar 

  17. Greer, M.L., Pujo-Menjouet, L., Webb, G.F.: A mathematical analysis of the dynamics of prion proliferation. J. Theor. Biol. 242(3), 598–606 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ciuperca, I.S., Dumont, M., Lakmeche, A., Mazzocco, P., Pujo-Menjouet, L., Rezaei, H., Tine, L.: Alzheimer’s disease and prion: an in vitro mathematical model. Discrete Contin. Dyn. Syst. Ser. B 24(10), 5225–5260 (2019)

    MathSciNet  Google Scholar 

  19. Pruss, J., Pujo-Menjouet, L., Webb, G.F., Zacher, R.: Analysis of a model for the dynamics of prions. Discrete Contin. Dyn. Syst. Ser. B 6(1), 225–235 (2006)

    MathSciNet  Google Scholar 

  20. Whittington, A., Sharp, DJ., Gunn. RN.: Spatiotemporal distribution of beta-amyloid in Alzheimer disease is the result of heterogeneous regional carrying capacities. J. Nucl. Med. 59(5), 822–827 (2018)

  21. Zhao, J., O’Connor, T., Vassar, R.: The contribution of activated astrocytes to A\(\beta\) production: implications for Alzheimer’s disease pathogenesis. J. Neuroinflammation. 8, 1–17 (2011)

  22. Frost, G.R., Li, Y.M.: The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 7(12),(2017)

  23. Wang, W., Hou, T.T., Jia, L.F., Wu, Q.Q., Quan, M.N., Jia, J.P.: Toxic amyloid-\(\beta\) oligomers induced self-replication in astrocytes triggering neuronal injury. EBioMedicine 42, 174–187 (2019)

  24. Sollvander, S., Nikitidou, E., Brolin, R., Söderberg, L., Sehlin, D., Lannfelt, L., Erlandsson, A.: Accumulation of amyloid-\(\beta\) by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol. Neurodegener. 11(1), 1–19 (2016)

  25. Han, P., Shi, J.: A theoretical analysis of the synergy of amyloid and tau in Alzheimers disease. J. Alzheimer’s Dis. 52(4), 1461–1470 (2016)

    Article  Google Scholar 

  26. Dzamba, D., Harantova, L., Butenko, O., Anderova, M.: Glial cells - the key elements of Alzheimer’s disease. Curr. Alzheimer Res. 13(8), 894–911 (2016)

    Article  Google Scholar 

  27. Cruz, J.V.R., Batista, C., Diniz, L.P., Mendes, F.A.: The role of astrocytes and blood-brain barrier disruption in Alzheimer’s disease. Neuroglia 4(3), 209–221 (2023)

    Article  Google Scholar 

  28. Diniz, L.P., Tortelli, V., Matias, I., Morgado, J., Araujo, A.P.B., Melo, H.M., da Silva, G.S.S., Alves-Leon, S.V., de Souza, J.M., Ferreira, S.T., De Felice, F.G.: Astrocyte transforming growth factor beta 1 protects synapses against A\(\beta\) oligomers in Alzheimer’s disease model. J. Neurosci. 37(28), 6797–6809 (2017)

  29. Reid, M.J., Beltran-Lobo, P., Johnson, L., Perez-Nievas, B.G., Noble, W.: Astrocytes in tauopathies. Front. Neurol. 11, (2020)

  30. Ross, S.L.: Differential Equations. 3rd Edition, John Wiley & Sons Inc., Hoboken. (2004). https://doi.org/10.1007/978-1-4757-3949-7

  31. Liénard, A., Chipart, M.H.: Sur le signe de la partie reelle des racines d’une equation algebrique. J. Math. Pures Appl. 10(6), 291–346 (1914)

    Google Scholar 

  32. Wang, X.: A simple proof of Descartes’s rule of signs. Am. Math. Mon. 111(6), 525 (2004)

    Article  Google Scholar 

  33. Das, A.: A novel method to solve cubic and quartic equations. Preprint (2014). https://www.researchgate.net/publication/308874670_A_novel_method_to_solve_cubic_and_quartic_equations

  34. Khajanchi, S., Das, D.K., Kar, T.K.: Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation. Physica A 497, 52–71 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Khajanchi, S., Banerjee, S.: Quantifying the role of immunotherapeutic drug T11 target structure in progression of malignant gliomas: mathematical modeling and dynamical perspective. Math. Biosci. 289, 69–77 (2017)

    Article  MathSciNet  Google Scholar 

  36. Khajanchi, S.: Uniform persistence and global stability for a brain tumor and immune system interaction. Biophys. Rev. Lett. 12(4), 187–208 (2017)

    Article  Google Scholar 

  37. Kellett, K.A., Hooper, N.M.: Prion protein and Alzheimer disease. Prion 3(4), 190–194 (2009)

    Article  Google Scholar 

  38. Del Bo, R., Scarlato, M., Ghezzi, S., Martinelli-Boneschi, F., Fenoglio, C., Galimberti, G., Galbiati, S., Virgilio, R., Galimberti, D., Ferrarese, C., Scarpini, E.: Is M129V of PRNP gene associated with Alzheimer’s disease? A case-control study and a meta-analysis. Neurobiol. Aging 27(5), 770.e1-770.e5 (2006)

    Google Scholar 

  39. Schwarze-Eicker, K., Keyvani, K., Görtz, N., Westaway, D., Sachser, N., Paulus, W.: Prion protein (PrPc) promotes \(\beta\)-amyloid plaque formation. Neurobiol. Aging. 26(8), 1177–1182 (2005)

  40. Daud, A.A.M.: A note on Liénard-Chipart criteria and its application to epidemic models. J. Math. Stat. 9(1), 41–45 (2021)

    Article  Google Scholar 

  41. Garbuz, D.G., Zatsepina, O.G., Evgen’ev, M.B.: Beta amyloid, tau protein, and neuroinflammation: an attempt to integrate different hypotheses of Alzheimer’s disease pathogenesis. Mol. Biol. 55, 670–682 (2021)

    Article  Google Scholar 

  42. Mroczko, B., Groblewska, M., Litman-Zawadzka, A., Kornhuber, J., Lewczuk, P.: Amyloid \(\beta\) oligomers (A\(\beta\)Os) in Alzheimer’s disease. J. Neural Transm. 125, 177–191 (2018)

  43. Chen, G.F., Xu, T.H., Yan, Y., Zhou, Y.R., Jiang, Y., Melcher, K., Xu, H.E.: Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38(9), 1205–1235 (2017)

    Article  Google Scholar 

  44. Sjögren, M., Davidsson, P., Tullberg, M., Minthon, L., Wallin, A., Wikkelso, C., Granérus, A.K., Vanderstichele, H., Vanmechelen, E., Blennow, K.: Both total and phosphorylated tau are increased in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 70(5), 624–630 (2001)

  45. Smit, T., Deshayes, N.A., Borchelt, D.R., Kamphuis, W., Middeldorp, J., Hol, E.M.: Reactive astrocytes as treatment targets in Alzheimer’s disease? Systematic review of studies using the APPswePS1dE9 mouse model. Glia 69(8), 1852–1881 (2021)

    Article  Google Scholar 

  46. Furman, J.L., Sama, D.M., Gant, J.C., Beckett, T.L., Murphy, M.P., Bachstetter, A.D., Van Eldik, L.J., Norris, C.M.: Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J. Neurosci. 32(46), 16129–16140 (2012)

    Article  Google Scholar 

Download references

Funding

This study of Mitali Maji is supported by the University Grant Commission (UGC) (NTA Ref.: 211610045129), Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors equally contributed to this work.

Corresponding author

Correspondence to Subhas Khajanchi.

Ethics declarations

Informed consent

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, M., Khajanchi, S. Roles of astrocytes and prions in Alzheimer’s disease: insights from mathematical modeling. J Biol Phys (2023). https://doi.org/10.1007/s10867-023-09652-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10867-023-09652-0

Keywords

Navigation