Skip to main content

Advertisement

Log in

Alzheimer’s disease: analysis of a mathematical model incorporating the role of prions

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We introduce a mathematical model of the in vivo progression of Alzheimer’s disease with focus on the role of prions in memory impairment. Our model consists of differential equations that describe the dynamic formation of \(\upbeta \)-amyloid plaques based on the concentrations of A\(\upbeta \) oligomers, PrPC proteins, and the A\(\upbeta \)-\(\times \)-PrPCcomplex, which are hypothesized to be responsible for synaptic toxicity. We prove the well-posedness of the model and provided stability results for its unique equilibrium, when the polymerization rate of \(\upbeta \)-amyloid is constant and also when it is described by a power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achdou Y, Franchi B, Marcello N, Tesi M (2012) A qualitative model for aggregation and diffusion of \(\beta \)-amyloid in alzheimers disease. J Math Biol 1–24

  • Allen LJS (2007) An introduction to mathematical biology. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  • Calvez V, Lenuzza N, Oelz D, Deslys JP, Laurent P, Mouthon F, Perthame B (2009) Size distribution dependence of prion aggregates infectivity. Math Biosci 217(1):88–99

    Article  MathSciNet  MATH  Google Scholar 

  • Calvez V, Lenuzza N, Doumic M, Deslys JP, Mouthon F, Perthame B (2010) Prion dynamics with size dependency-strain phenomena. J Biol Dyn 4(1):28–42

    Article  MathSciNet  Google Scholar 

  • Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-\(\beta \) (a\(\beta \)) oligomers role of N-terminal residues. J Biol Chem 285(34):26,377–26,383

    Article  Google Scholar 

  • Chung E, Ji Y, Sun Y, Kascsak R, Kascsak R, Mehta P, Strittmatter S, Wisniewski T (2010) Anti-prpc monoclonal antibody infusion as a novel treatment for cognitive deficits in an alzheimer’s disease model mouse. BMC Neurosci 11(1):130

    Article  Google Scholar 

  • Cissé M, Mucke L (2009) Alzheimer’s disease: a prion protein connection. Nature 457(7233):1090–1091

    Article  Google Scholar 

  • Cissé M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P et al (2011) Reversing ephb2 depletion rescues cognitive functions in alzheimer model. Nature 469(7328):47–52

    Article  Google Scholar 

  • Collet JF, Goudon T (2000) On solutions of the lifshitz-slyozov model. Nonlinearity 13(4):1239

    Article  MathSciNet  MATH  Google Scholar 

  • Craft DL, Wein LM, Selkoe DJ (2002) A mathematical model of the impact of novel treatments on the a\(\beta \) burden in the alzheimers brain, csf and plasma. Bull Math Biol 64(5):1011–1031

    Article  Google Scholar 

  • Craft DL, Wein LM, Selkoe DJ (2005) The impact of novel treatments on a\(\beta \) burden in alzheimers disease: insights from a mathematical model. In: Brandeau ML, Sainfort F, Pierskalla WP (eds) Operations research and health care, international series in operations research and management science, vol 70. Springer, USA, pp 839–865

    Chapter  Google Scholar 

  • Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of alzheimer disease. Acta Neuropathol 118(1):5–36

    Article  Google Scholar 

  • Fawzi NL, Okabe Y, Yap EH, Head-Gordon T (2007) Determining the critical nucleus and mechanism of fibril elongation of the alzheimers a\(\beta _{1-40}\) peptide. J Mol Biol 365(2):535–550

    Article  Google Scholar 

  • Freir DB, Nicoll AJ, Klyubin I, Panico S, Risse E, Asante EA, Farrow MA, Sessions RB, Saibil HR, Clarke AR, Rowan MJ, Walsh DM, Collinge J (2011) Interaction between prion protein and toxic amyloid \(\beta \) assemblies can be therapeutically targeted at multiple sites. Nat Commun 2:336

    Article  Google Scholar 

  • Gabriel P (2011) The shape of the polymerization rate in the prion equation. Math Comput Model 53(7):1451–1456

    Article  MathSciNet  MATH  Google Scholar 

  • Gallion SL (2012) Modeling amyloid-beta as homogeneous dodecamers and in complex with cellular prion protein. PLoS One 7(11):e49,375

    Article  Google Scholar 

  • Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Laurén J, Gimbel ZA, Strittmatter SM (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 30(18): 6367–6374

    Google Scholar 

  • Greer ML, Pujo-Menjouet L, Webb GF (2006) A mathematical analysis of the dynamics of prion proliferation. J Theor Biol 242(3):598–606

    Article  MathSciNet  Google Scholar 

  • Greer ML, Van den Driessche P, Wang L, Webb GF (2007) Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation. SIAM J Appl Math 68(1):154–170

    Article  MathSciNet  MATH  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of a\(\beta \)42 immunisation in alzheimer’s disease: follow-up of a randomised, placebo-controlled phase i trial. The Lancet 372(9):216–223. doi:10.1016/S0140-6736(08)61075-2. http://www.sciencedirect.com/science/article/pii/S0140673608610752

  • Khalil HK (1996) Nonlinear systems. Prentice Hall, Upper Saddle River

    Google Scholar 

  • LaSalle JP (1976) The stability of dynamical systems. In: CBMS-NSF regional conference series in applied mathematics SIAM

  • Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-\(\beta \) oligomers. Nature 457(7233):1128–1132

    Article  Google Scholar 

  • Laurençot P, Walker C (2007) Well-posedness for a model of prion proliferation dynamics. J Evol Equ 7(2):241–264

    Article  MathSciNet  MATH  Google Scholar 

  • Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93(3):1125–1129

    Article  Google Scholar 

  • Lomakin A, Teplow DB, Kirschner DA, B BG, (1997) Kinetic theory of fibrillogenesis of amyloid\(\beta \)-protein. Proc Natl Acad Sci USA 94(15):7942–7947

  • Nath S, Agholme L, Kurudenkandy FR, Granseth B, Marcusson J, Hallbeck M (2012) Spreading of neurodegenerative pathology via neuron-to-neuron transmission of \(\beta \)-amyloid. J Neurosci 32(26):8767–8777

    Article  Google Scholar 

  • Nygaard HB, Strittmatter SM (2009) Cellular prion protein mediates the toxicity of beta-amyloid oligomers: implications for Alzheimer disease. Arch Neurol 66(11):1325

    Article  Google Scholar 

  • Portet S, Arino J (2009) An in vivo intermediate filament assembly model. Math Biosci Eng 6(1):117–134

    Article  MathSciNet  MATH  Google Scholar 

  • Prigent S, Ballesta A, Charles F, Lenuzza N, Gabriel P, Tine LM, Rezaei H, Doumic M (2012) An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation. PLoS One 7(11):e43,273

    Article  Google Scholar 

  • Prüss J, Pujo-Menjouet L, Webb G, Zacher R (2006) Analysis of a model for the dynamics of prions. Discret Contin Dyn Syst Ser B 6(1):225–235

    MATH  Google Scholar 

  • Resenberger UK, Harmeier A, Woerner AC, Goodman JL, Müller V, Krishnan R, Vabulas RM, Kretzschmar HA, Lindquist S, Hartl FU, Gerd M, Winklhofer KF, Tatzelt J (2011) The cellular prion protein mediates neurotoxic signalling of \(\beta \)-sheet-rich conformers independent of prion replication. EMBO J 30(10):2057–2070

    Article  Google Scholar 

  • Rubenstein R, Merz PA, Kascsak RJ, Scalici CL, Papini MC, Carp RI, Kimberlin RH (1991) Scrapie-infected spleens: analysis of infectivity, scrapie-associated fibrils, and protease-resistant proteins. J Infect Dis 164(1):29–35

    Article  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid \(\beta \)-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113

    Article  Google Scholar 

  • Serpell LC (2000) Alzheimers amyloid fibrils: structure and assembly. Biochim Biophys Acta Mol Basis Dis 1502(1):16–30

    Article  Google Scholar 

  • Simonett G, Walker C (2006) On the solvability of a mathematical model for prion proliferation. J Math Anal Appl 324(1):580–603

    Article  MathSciNet  MATH  Google Scholar 

  • Urbanc B, Cruz L, Buldyrev S, Havlin S, Irizarry M, Stanley H, Hyman B (1999) Dynamics of plaque formation in Alzheimer’s disease. Biophys J 76(3):1330–1334

    Article  Google Scholar 

  • Vincent B, Cisse MA, Sunyach C, Guillot-Sestier MV, Checler F (2008) Regulation of \(\beta \) app and prpc cleavage by \(\alpha \)-secretase: mechanistic and therapeutic perspectives. Curr Alzheimer Res 5(2):202–211

    Article  Google Scholar 

  • Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid \(\beta \)-protein fibrillogenesis detection of a protofibrillar intermediate. J Biol Chem 272(35):22,364–22,372

    Article  Google Scholar 

  • Wimo A, Prince M (2010) World Alzheimer report 2010: the global economic impact of dementia. Technical report, Alzheimer’s Disease International

  • Zou WQ, Zhou X, Yuan J, Xiao X (2011) Insoluble cellular prion protein and its association with prion and Alzheimer diseases. Prion 5(3):172–178

    Article  Google Scholar 

Download references

Acknowledgments

The authors thanks the Reviewers for their usefull comments and suggestions. E.H. thanks A. Rambaud for helpful discussions, which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Hingant.

Additional information

This work was supported by ANR grant MADCOW no. 08-JCJC-0135-CSD5. E. H. was partially supported by FONDECYT Postoctoral Grant no. 3130318 (Chile).

Appendices

Appendix A: Characteristic polynomials of the linearized ODE system

Here we give the coefficient \(a_i\), \(i=1,\ldots ,4\) for the characteristic polynomial of the linearized system in Theorem 1:

$$\begin{aligned} \displaystyle a_1&= \displaystyle \left( \mu +\gamma _u+\tau \frac{\lambda _p}{\tau ^*u_\infty +\gamma _p}+\alpha n^2 u_\infty ^{n-1}+\rho \frac{\alpha }{\mu }u_\infty ^n+\gamma _p+\tau u_\infty +\sigma +\delta \right) ,\\ \displaystyle a_2&= \displaystyle \left( \mu +\gamma _u+\alpha n^2u_\infty ^{n-1}+\rho \frac{\alpha }{\mu }u_\infty ^n\right) (\gamma _p+\tau u_\infty +\sigma +\delta )+\gamma _p\sigma +(\gamma _p+\tau u_\infty )\delta \\&+\mu \left( \gamma _u+\tau \frac{\lambda _p}{\tau ^*u_\infty +\gamma _p}+\alpha n^2u_\infty ^{n-1}+\rho \frac{\alpha }{\mu }u_\infty ^n\right) +\rho \alpha nu_\infty ^n+\tau (\gamma _p+\delta )\frac{\lambda _p}{\tau ^*u_\infty +\gamma _p},\\ \displaystyle a_3&= \displaystyle \left( \mu +\gamma _u+\alpha n^2 u_\infty ^{n-1}+\rho \frac{\alpha }{\mu } u_\infty ^n\right) (\gamma _p\sigma \!+\!(\gamma _p\!+\!\tau u_\infty )\delta )\!+\!(\gamma _p\delta \!+\!(\!\gamma _p+\delta )\mu )\tau \frac{\lambda _p}{\tau ^* u_\infty +\gamma _p}\\&+ \left\{ \mu \left( \gamma _u+\alpha n^2u_\infty ^{n-1}+\rho \frac{\alpha }{\mu }u_\infty ^n\right) +\rho \alpha nu_\infty ^n\right\} (\gamma _p+\tau u_\infty +\sigma +\delta ),\\ \displaystyle a_4&= \displaystyle \mu \gamma _p\delta \tau \frac{\lambda _p}{\tau ^*u_\infty +\gamma _p} +\left\{ \mu \left( \gamma _u+\alpha n^2u_\infty ^{n-1}+\rho \frac{\alpha }{\mu }u_\infty ^n\right) +\rho \alpha nu_\infty ^n\right\} (\gamma _p\sigma +(\gamma _p+\tau u_\infty )\delta ). \end{aligned}$$

Appendix B: Lyapunov functional

Here we detail a Lyapunov function \(\varPhi \) which is the key ingredient to prove global stability of system (811) in Proposition 2. This function appears to be a bit tricky, but determining it rest upon the backward method described for instance Chapter 4, p. 120, in the book by Khalil (1996). It consists in investigate an expression of the derivative \(\varPhi '\) and then going back to chose the parameters \(\varPhi \) such as \(\varPhi '\) is negative definite. After tedious calculus, a Liapunov function \(\varPhi \) for system (811) is given by

$$\begin{aligned} \varPhi&= \frac{1}{2}\left( \frac{2\gamma _p}{\delta }\right) s_1\theta _1^2+\frac{1}{2}\left( 1+2\frac{\delta +\gamma _u+\rho (A_\infty +\theta _1)}{\sigma }\right) \theta _2^2+\frac{1}{2}\left( \frac{2\gamma _p}{\delta }\right) \theta _3^2\\&+\frac{1}{2}\left( \frac{\sigma }{\gamma _p}\right) \theta _4^2+ \left( \frac{\rho p_\infty }{\gamma _u+\rho A_\infty +\mu }\right) \theta _1\theta _2+\theta _1\theta _3\\&+\left( \frac{\rho p_\infty }{\gamma _u+\rho A_\infty +\mu }+1+\frac{\rho }{\tau }\right) \theta _1\theta _4+\theta _2\theta _3 +2\theta _2\theta _4+\left( \frac{2\gamma _p}{\delta }\right) \theta _3\theta _4, \end{aligned}$$

where \(\theta _1=A-A_\infty \), \(\theta _2=u-u_\infty \), \(\theta _3=p-p_\infty \), \(\theta _4=b-b_\infty \), with \(s_1=\max (T_1,T_2)\) such that

$$\begin{aligned} T_1&= \frac{\rho ^2\delta u_\infty ^2\left( 1+2\frac{1+\delta }{\sigma }\right) }{8\mu \gamma _p}+\frac{(\gamma _p+\mu )^2\left( \frac{\delta }{2\gamma _p}\right) ^2}{4\gamma _p\mu }\\&+\frac{\left[ (\delta +\mu )\left( \frac{\rho p_\infty }{\gamma _u+\rho A_\infty +\mu }+1\right) +(\sigma +\delta +\mu )\frac{\rho }{\tau }+2\rho u_\infty \right] ^2}{8\mu \sigma }, \end{aligned}$$

and \(T_2 = \varGamma \left( \frac{\delta }{2\gamma _p}\right) ^2 T_2'\) with

$$\begin{aligned} T_2'&= \left( \frac{\rho p_\infty }{\gamma _u+\rho A_\infty +\mu } \right) ^2 \left\{ \frac{2\sigma +\delta }{2\gamma _p} +\left( \frac{\delta }{2\gamma _p} \varGamma \right) ^{-1}\left( \frac{1}{1+2\frac{\delta +\gamma _u}{\sigma }}\right) \right\} \\&+ \frac{\rho p_\infty }{\gamma _u+\rho A_\infty +\mu } \left\{ 2+4\frac{\rho }{\tau }\frac{\delta +\gamma _u}{\sigma }\right\} + \frac{\delta }{2\gamma _p}\left\{ \frac{\rho }{\tau }\left( 2+\frac{\rho }{\tau }\right) +\frac{\sigma +2(\delta +\gamma _u)}{\gamma _p}\right\} \\&+\left( 1+2\frac{\delta +\gamma _u}{\sigma }\right) \left\{ \frac{\rho }{\tau }\left( 1+\frac{\rho }{\tau }\right) + \frac{\delta }{2\gamma _p}\frac{\sigma }{\gamma _p}-1\right\} \end{aligned}$$

and

$$\begin{aligned} \varGamma =\frac{1}{\left( 1+2\frac{\delta +\gamma _u}{\sigma }-\frac{\delta }{2\gamma _p}\right) \left( \frac{\delta }{2\gamma _p}\frac{\sigma }{\gamma _p}-1\right) }\cdot \end{aligned}$$

We remark that \(T_1>0\) so that \(s_1 >0\), and then we deduce that the Lyapunov function \(\varPhi \) is positive when condition \(\left( 1+2\frac{\delta +\gamma _u}{\sigma }\right) >\frac{\delta }{2\gamma _p}>\frac{\gamma _p}{\sigma }\) holds true. In such case, its derivative along the solutions of system (811) is given by

$$\begin{aligned} \varPhi '&= \displaystyle -\displaystyle \left( \mu s_1+\rho u\frac{\delta }{2\gamma _p}\cdot \frac{\rho p_\infty }{\gamma _u+\rho A_\infty +\mu }\right) \theta _1^2-\rho u_\infty \frac{\delta }{2\gamma _p}\left( 1+2\frac{\gamma _u\!+\!\rho (A_\infty +\theta _1)\!+\!\delta }{\sigma }\right) \theta _1\theta _2 \\&- \displaystyle \frac{\delta }{2\gamma _p}\left( \frac{2(\gamma _u+\rho (A_\infty +\theta _1)+\tau p)(\gamma _u+\rho (A_\infty +\theta _1)+\delta )}{\sigma }+\gamma _u+\rho (A_\infty +\theta _1)\right) \theta _2^2 \\&- \displaystyle \frac{\delta }{2\gamma _p}\left( (\delta +\mu )\left( \frac{\rho p_\infty }{\gamma _u+\rho A_\infty +\mu }+1\right) +(\sigma +\delta +\mu )\frac{\rho }{\tau }+2\rho u_\infty \right) \theta _1\theta _4\\&- \displaystyle \left( \frac{\delta \tau u}{2\gamma _p}+\gamma _p\right) \theta _3^2-\delta \left( \frac{\sigma }{\gamma _p}\frac{\delta }{2\gamma _p}\right) \theta _4^2 - \frac{\delta }{2\gamma _p}(\gamma _p+\mu )\theta _1\theta _3. \end{aligned}$$

and remains nonpositive. Furthermore, \(\varPhi '=0\) if and only if \(\theta _1=\theta _2=\theta _3=\theta _4=0\). The conclusion holds by the LaSalle Invariance Principle LaSalle (1976).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helal, M., Hingant, E., Pujo-Menjouet, L. et al. Alzheimer’s disease: analysis of a mathematical model incorporating the role of prions. J. Math. Biol. 69, 1207–1235 (2014). https://doi.org/10.1007/s00285-013-0732-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0732-0

Keywords

Mathematics Subject Classification (2000)

Navigation