Hille, B.: Ionic Channels of Excitable Membranes, 3rd edn. Sinauer Associates Inc., Sunderland MA (2001)
Google Scholar
Hübner, C.A., Jentsch, T.J.: Ion channel diseases. Hum. Mol. Genet. 11, 2435–2445 (2002)
Google Scholar
Cummins, T.R., Dib-Hajj, S.D., Waxman, S.G.: Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J. Neurosci. 24, 8232–8236 (2014)
Google Scholar
Han, C., Rush, A.M., Dib-Hajj, S.D., et al.: Sporadic onset of erythermalgia: a gain-of-function mutation in Nav1.7. Ann. Neurol. 59, 553–558 (2006)
Google Scholar
Harty, T.P., Dib-Hajj, S.D., Tyrrell, L., Blackman, R., Hisama, F.M., Rose, J.B., Waxman, S.G.: NaV1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons. J. Neurosci. 26, 12566–12575 (2006)
Google Scholar
Lampert, A., Dib-Hajj, S.D., Eastman, E.M., Tyrrell, L., Lin, Z., Yang, Y., Waxman, S.G.: Erythromelalgia mutation L823R shifts activation and inactivation of threshold sodium channel Nav1.7 to hyperpolarized potentials. Biochem. Biophys. Res. Commun. 390, 319–324 (2006)
Google Scholar
Stadler, T., O’Reilly, A.O., Lampert, A.: Erythromelalgia mutation Q875E stabilizes the activated state of sodium channel Nav1.7. J. Biol. Chem. 290, 6316–6325 (2015)
Google Scholar
Yang, Y., Wang, Y., Li, S., et al.: Mutations in SCN9a, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 41, 171–174 (2004)
Google Scholar
Dib-Hajj, S.D., Rush, A.M., Cummins, T.R., et al.: Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128, 1847–1854 (2005)
Google Scholar
Drenth, J.P., te Morsche, R.H.M., Guillet, G., Taieb, A., Lee Kirby, R., Jansen, J.B.M.: SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels. J. Invest. Dermatol. 124, 1333–1338 (2005)
Google Scholar
Lee, M.J., Yu, H.S., Hsieh, S.T., et al.: Characterization of a familial case with primary erythromelalgia from Taiwan. J. Neurol. 254, 210–214 (2007)
Google Scholar
Drenth, J.P., Waxman, S.G.: Mutations in sodium-channel gene SCN9a cause a spectrum of human genetic pain disorders. J. Clin. Invest. 117, 3603–3609 (2007)
Google Scholar
Fertleman, C.R., Baker, M.D., Parker, K.A., et al.: SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774 (2006)
Google Scholar
Jarecki, B.W., Sheets, P.L., Jackson, 2nd J.O., Cummins, T.R.: Paroxysmal extreme pain disorder mutations within the D3/S4-S5 linker of Nav1.7 cause moderate destabilization of fast inactivation. J. Physiol. 586, 4137–4153 (2008)
Google Scholar
Dib-Hajj, S.D., Estacion, M., Jarecki, B.W., et al.: Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable. Mol. Pain 4, 37 (2008)
Google Scholar
Theile, J.W., Jarecki, B.W., Piekarz, A.D., Cummins, T.R.: Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navβ4 peptide-mediated resurgent sodium currents. J. Physiol. 589, 597–608 (2011)
Google Scholar
Faber, C.G., Hoeijmakers, J.G., Ahn, H.S., et al.: Gain of function Nav1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71, 26–39 (2012)
Google Scholar
Hoeijmakers, J.G., Han, C., Merkies, I.S., et al.: Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. Brain 135, 345–358 (2012)
Google Scholar
Qu, Y., Rogers, J., Tanada, T., Scheuer, T., Catterall, W.A.: Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac na+ channel. Proc. Natl. Acad. Sci. USA 270, 25696–25701 (1995)
Google Scholar
Keating, M.T., Sanguinetti, M.C.: Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104, 569–580 (2001)
Google Scholar
Catterall, W.A., Kalume, F., Oakley, J.C.: Nav1.1 channels and epilepsy. J. Physiol. 588, 1849–1859 (2010)
Google Scholar
Mullins, L.J.: The permeation of some cations into muscle. J. Gen. Physiol. 42, 817–829 (1959)
Google Scholar
Mullins, L.J.: An analysis of conductance changes in squid axon. J. Gen. Physiol. 42, 1013–1035 (1959)
Google Scholar
Mullins, L.J.: The macromolecular properties of excitable membranes. Ann. NY Acad. Sci. 94, 390–404 (1961)
ADS
Google Scholar
Beckstein, O., Biggin, P.C., Sansom, M.S.P.: A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B 105, 12902–12905 (2001)
Google Scholar
Beckstein, O., Sansom, M.S.P.: Liquid-vapor oscillations of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 100, 7063–7068 (2003)
ADS
Google Scholar
Allen, R., Hansen, J.-P.: Molecular dynamics investigation of water permeation through nanopores. J. Chem. Phys. 119, 3905–3919 (2003)
ADS
Google Scholar
Beckstein, O., Sansom, M.S.P.: The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys. Biol. 1, 42–52 (2004)
ADS
Google Scholar
Jensen, M.Ø., Borhani, D.W., Lindorff-Larsen, K.: Principles of conduction and hydrophobic gating in k+ channels. Proc. Natl. Acad. Sci. USA 107, 5833–5838 (2010)
ADS
Google Scholar
Aryal, P., Sansom, M.S.P, Tucker, S.J.: Hydrophobic gating in ion channels. J. Mol. Biol. 427, 121–130 (2015)
Google Scholar
Payandeh, J., Scheuer, T., Zheng, N., Catterall, W.A.: The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011)
Google Scholar
Yonkunas, M., Kurnikova, M.: The hydrophobic effect contributes to the closed state of a simplified ion channel through a conserved hydrophobic patch at the pore-helix crossing. Front. Pharmacol. 6, 284 (2015)
Google Scholar
Kitaguchi, T., Sukhareva, M., Swartz, K.J.: Stabilizing the closed S6 gate in the Shaker kv channel through modification of a hydrophobic seal. J. Gen. Physiol. 124, 319–332 (2004)
Google Scholar
Hummer, G., Garde, S., García, A.E., Paulaitis, M.E., Pratt, L.R.: Hydrophobic effects on a molecular scale. J. Phys. Chem. B 102, 10469–10482 (1998)
Google Scholar
Lum, K., Chandler, D., Weeks, J.D.: Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999)
Google Scholar
Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988)
ADS
MathSciNet
MATH
Google Scholar
Khaluf, Y., Ferrante, E., Simoens, P., Huepe, C.: Scale invariance in natural and artificial collective systems: a review. J. R. Soc. Interface 14, 20170662 (2017)
Google Scholar
Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)
ADS
Google Scholar
Moret, M.A., Zebende, G.F.: Amino acid hydrophobicity and accessible surface area. Phys. Rev. E 75, 011920 (2007)
ADS
Google Scholar
Hammer, M.U., Anderson, T.H., Chaimovich, A., Shell, M.S., Israelachvili, J.: The search for the hydrophobic force law. Faraday. Discuss. 146, 299–308 (2010)
ADS
Google Scholar
Xenakis, M.N., Kapetis, D., Yang, Y., et al.: Cumulative hydropathic topology of a voltage-gated sodium channel at atomic resolution. Proteins 88, 1319–1328 (2020)
Google Scholar
Ren, D., Navarro, B., Xu, H., Yue, L., Shi, Q., Clapham, D.E.: A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375 (2001)
ADS
Google Scholar
Yu, FH, Catterall, W.A.: The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis Sci. STKE 2004:re15 (2004)
Richards, F.J.: A flexible growth function for empirical use. J. Exp. Bot. 10, 290–300 (1959)
Google Scholar
Martinez, A.S., González, R.S., Terçariol, C.A.S.: Continuous growth models in terms of generalized logarithm and exponential functions. Physica. A 387, 5679–5687 (2008)
ADS
MathSciNet
Google Scholar
Jan, L.Y., Jan, Y.N.: A superfamily of ion channels. Nature 345, 672 (1990)
ADS
Google Scholar
Keynes, R.D., Elinder, F.: The screw-helical voltage gating of ion channels. Proc. Biol. Sci. 266, 843–852 (1999)
Google Scholar
Silverman, B.D.: Hydrophobic moments of tertiary protein structures. Proteins 53, 880–888 (2003)
Google Scholar
Phillips, J.C.: Scaling and self-organized criticality in proteins I. Proc. Natl. Acad. Sci. USA 106, 3107–3112 (2009)
ADS
Google Scholar
Phillips, J.C.: Scaling and self-organized criticality in proteins II. Proc. Natl. Acad. Sci. USA 106, 3113–3118 (2009)
ADS
Google Scholar
Moret, M.A.: Self-organized critical model for protein folding. Physica. A 390, 3055–3059 (2011)
ADS
Google Scholar
Vriend, G.: WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 8, 52–56 (1980)
Google Scholar
Hooft, R.W., Sander, C., Vriend, G.: Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 26, 363–376 (1996)
Google Scholar
Humphrey, W., Dalke, A., Schulten, K.: VMD-Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)
Google Scholar
Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A., Sansom, MSP: HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996)
Google Scholar
Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J., Kschischo, M.: Fitting biological growth curves with R. J. Stat. Softw. 33, 1–21 (2010)
Google Scholar
Zwietering, M.H., Jongenburger, I., Rombouts, F.M., van’T Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)
Google Scholar
Blumberg, A.A.: Logistic growth rate functions. J. Theoret. Biol. 21, 42 (1968)
Google Scholar
Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. London 115, 513–585 (1825)
ADS
Google Scholar
Tjørve, E., Tjørve, K.M.C.: A unified approach to the Richards-model family for use in growth analyses: Why we need only two model forms. J. Theor. Biol. 267, 417–425 (2010)
MathSciNet
MATH
Google Scholar
Eisenberg, D., Weiss, R.M., Terwilliger, T.C., Wilcox, W.: Hydrophobic moments and protein structure. Faraday Symp. Chem. Soc. 17, 109–120 (1982)
Google Scholar
Kapcha, L.H., Rossky, P.J.: A simple Atomic-Level hydrophobicity scale reveals protein interfacial structure. J. Mol. Biol. 426, 484–498 (2014)
Google Scholar
Gaines, J.C., Clark, A.H., Regan, L., O’Hern, C.S.: Packing in protein cores. J. Phys.: Cond. Matter 29, 293001 (2017)
Google Scholar
Yu, H., Noskov, S.Y., Roux, B.: Two mechanisms of ion selectivity in protein binding sites. Proc. Natl. Acad. Sci. USA 107, 20329–20334 (2010)
ADS
Google Scholar
Roux, B., Bernèche, S., Egwolf, B., Lev, B., Noskov, S.Y., Rowley, C.N., Yu, H.: Ion selectivity in channels and transporters. J. Gen. Physiol. 137, 415–426 (2011)
Google Scholar
Heinemann, S.H., Terlau, H., Stuhmer, W., Imoto, K., Numa, S.: Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443 (1992)
ADS
Google Scholar
Heyne, H.O., Baez-nieto, D., Iqba, S., et al.: A machine learning method can predict loss- versus gain-of-function effects of human genetic variants in disease-associated ion channels. Sci. Transl. Med. 12, 556 (2020)
Google Scholar
Boiteus, C., Vorobyov, I., Allen, T.W.: Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 111, 3454–3459 (2014)
ADS
Google Scholar
Perez-Aguilar, J.M., Saven, J.G.: Computational design of membrane proteins. Structure 20, 5–14 (2012)
Google Scholar
Kapetis, D., Yang, Y., Sassone, J., et al.: Network topology of NaV1.7 mutations in sodium channel-related painful disorders. BMC Syst. Biol. 11, 28 (2017)
Google Scholar
Hille, B.: Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 69, 497–515 (1977)
Google Scholar