Skip to main content
Log in

Electrothermal transport of third-order fluids regulated by peristaltic pumping

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The study of heat and electroosmotic characteristics in the flow of a third-order fluid regulated by peristaltic pumping is examined by using governing equations, i.e., the continuity equation, momentum equation, energy equation, and concentration equation. The wavelength is considered long compared to its height and a low Reynolds number is assumed. The velocity slip condition is employed. Analytical solutions are performed through the perturbation technique. The expressions for the dimensionless velocity components, temperature, concentration, and heat transfer rate are obtained. Pumping features were computed numerically for discussion of results. Trapping and heat transfer coefficient distributions were also studied graphically. The findings of the present study can be applied to design biomicrofluidic devices like tumor-on-a-chip and organ-on-a-chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cao, X., Ashfaq, R., Cheng, F., Maharjan, S., Li, J., Ying, G., Zhang, Y.S.: A tumor-on-a-chip system with bioprinted blood and lymphatic vessel pair. Adv. Funct. Mater. 1807173, (2019)

  2. Bhise, N.S., Ribas, J., Manoharan, V., Zhang, Y.S., Polini, A., Massa, S., Khademhosseini, A.: Organ-on-a-chip platforms for studying drug delivery systems. J. Control. Release 190, 82–93 (2014)

    Article  Google Scholar 

  3. Luni, C., Serena, E., Elvassore, N.: Human-on-chip for therapy development and fundamental science. Curr. Opin. Biotechnol. 25, 45–50 (2014)

    Article  Google Scholar 

  4. Patankar, N.A., Hu, H.H.: Numerical simulation of electroosmotic flow. Anal. Chem. 70, 1870–1881 (1998)

    Article  Google Scholar 

  5. Yang, R.J., Fu, L.M., Lin, Y.C.: Electroosmotic flow in microchannels. J. Colloid Interface Sci. 239, 98–105 (2001)

    Article  ADS  Google Scholar 

  6. Xuan, X., Xu, B., Sinton, D., Li, D.: Electroosmotic flow with Joule heating effects. Lab Chip 4, 230–236 (2004)

    Article  Google Scholar 

  7. Tang, G.Y., Yang, C., Chai, J.C., Gong, H.Q.: Joule heating effect on electroosmotic flow and mass species transport in a microcapillary. Int. J. Heat Mass Transf. 47, 215–227 (2004)

    Article  Google Scholar 

  8. Zhao, C., Zholkovskij, E., Masliyah, J.H., Yang, C.: Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J. Colloid Interface Sci. 326, 503–510 (2008)

    Article  ADS  Google Scholar 

  9. Tang, G.H., Li, X.F., He, Y.L., Tao, W.Q.: Electroosmotic flow of non-Newtonian fluid in microchannels. J. Non-Newtonian Fluid Mech. 157, 133–137 (2009)

    Article  Google Scholar 

  10. Jiang, Y., Qi, H., Xu, H., Jiang, X.: Transient electroosmotic slip flow of fractional Oldroyd-B fluids. Microfluid. Nanofluid. 21, 7 (2017)

    Article  Google Scholar 

  11. Ko, C.H., Li, D., Malekanfard, A., Wang, Y.N., Fu, L.M., Xuan, X.: Electroosmotic flow of non-Newtonian fluids in a constriction microchannel. Electrophoresis (2018). https://doi.org/10.1002/elps.201800315

  12. Yang, X., Qi, H., Jiang, X.: Numerical analysis for electroosmotic flow of fractional Maxwell fluids. Appl. Math. Lett. 78, 1–8 (2018)

    Article  MathSciNet  Google Scholar 

  13. Chaube, M.K., Yadav, A., Tripathi, D., Bég, O.A.: Electroosmotic flow of biorheological micropolar fluids through microfluidic channels. Korea-Australia Rheol. J. 30, 89–98 (2018)

    Article  Google Scholar 

  14. Bag, N., Bhattacharyya, S.: Electroosmotic flow of a non-Newtonian fluid in a microchannel with heterogeneous surface potential. J. Non-Newtonian Fluid Mech. 259, 48–60 (2018)

    Article  MathSciNet  Google Scholar 

  15. Xie, Z.Y., Jian, Y.J., Li, F.Q.: Thermal transport of magnetohydrodynamic electroosmotic flow in circular cylindrical microchannels. Int. J. Heat Mass Transf. 119, 355–364 (2018)

    Article  Google Scholar 

  16. Fung, Y.C., Yih, C.S.: Peristaltic transport. J. Appl. Mech. 35(4), 669–675 (1968). https://doi.org/10.1115/1.3601290

    Article  ADS  MATH  Google Scholar 

  17. Jaffrin, M.Y., Shapiro, A.H.: Peristaltic pumping. Annu. Rev. Fluid Mech. 3, 13–37 (1971)

    Article  ADS  Google Scholar 

  18. Burns, J.C., Parkes, T.: Peristaltic motion. J. Fluid Mech. 29, 731–743 (1967)

    Article  ADS  Google Scholar 

  19. Pozrikidis, C.: A study of peristaltic flow. J. Fluid Mech. 180, 515–527 (1987)

    Article  ADS  Google Scholar 

  20. Li, M., Brasseur, J.G.: Non-steady peristaltic transport in finite-length tubes. J. Fluid Mech. 248, 129–151 (1993)

    Article  ADS  Google Scholar 

  21. Böhme, G., Friedrich, R.: Peristaltic flow of viscoelastic liquids. J. Fluid Mech. 128, 109–122 (1983)

    Article  ADS  Google Scholar 

  22. Vajravelu, K., Radhakrishnamacharya, G., Radhakrishnamurty, V.: Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation. Int. J. Non Linear Mech. 42, 754–759 (2007)

    Article  ADS  Google Scholar 

  23. Tripathi, D.: Study of transient peristaltic heat flow through a finite porous channel. Math. Comput. Model. 57, 1270–1283 (2013)

    Article  MathSciNet  Google Scholar 

  24. Srinivas, S., Kothandapani, M.: Peristaltic transport in an asymmetric channel with heat transfer-a note. Int. Commun. Heat Mass Transfer 35, 514–522 (2008)

    Article  Google Scholar 

  25. Akbar, N.S., Nadeem, S.: Endoscopic effects on peristaltic flow of a nanofluid. Commun. Theor. Phys. 56, 761 (2011)

    Article  ADS  Google Scholar 

  26. Tripathi, D., Bég, O.A.: A study on peristaltic flow of nanofluids: application in drug delivery systems. Int. J. Heat Mass Transf. 70, 61–70 (2014)

    Article  Google Scholar 

  27. Akbar, N.S., Nadeem, S., Hayat, T., Hendi, A.A.: Peristaltic flow of a nanofluid with slip effects. Meccanica 47, 1283–1294 (2012)

    Article  MathSciNet  Google Scholar 

  28. Reddy, M.G., Makinde, O.D.: Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J. Mol. Liq. 223, 1242–1248 (2016)

    Article  Google Scholar 

  29. Kothandapani, M., Prakash, J.: Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. Int. J. Heat Mass Transf. 81, 234–245 (2015)

    Article  Google Scholar 

  30. Bhatti, M.M., Zeeshan, A., Ellahi, R.: Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc. Res. 110, 32–42 (2017)

    Article  Google Scholar 

  31. Chakraborty, S.: Augmentation of peristaltic microflows through electro-osmotic mechanisms. J. Phys. D Appl. Phys. 39, 5356 (2006)

  32. Bandopadhyay, A., Tripathi, D., Chakraborty, S.: Electroosmosis-modulated peristaltic transport in microfluidic channels. Phys. Fluids 28, 052002 (2016)

    Article  ADS  Google Scholar 

  33. Ranjit, N.K., Shit, G.C.: Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy 128, 649–660 (2017)

    Article  Google Scholar 

  34. Tripathi, D., Yadav, A., Bég, O.A.: Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis. Physical J. Plus 132, 173 (2017)

  35. Tripathi, D., Bhushan, S., Bég, O.A.: Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics. J. Mech. Med. Biol. 17, 1750052 (2017)

    Article  Google Scholar 

  36. Prakash, J., Sharma, A., Tripathi, D.: Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liq. 249, 843–855 (2017)

    Article  Google Scholar 

  37. Tripathi, D., Borode, A., Jhorar, R., Bég, O.A., Tiwari, A.K.: Computer modelling of electro-osmotically augmented three-layered microvascular peristaltic blood flow. Microvasc. Res. 114, 65–83 (2017)

    Article  Google Scholar 

  38. Guo, X., Qi, H.: Analytical solution of electro-osmotic peristalsis of fractional Jeffreys fluid in a micro-channel. Micromachines 8, 341 (2017)

    Article  Google Scholar 

  39. Tripathi, D., Jhorar, R., Bég, O.A., Shaw, S.: Electroosmosis modulated peristaltic biorheological flow through an asymmetric microchannel: mathematical model. Meccanica 53, 2079–2090 (2018)

    Article  MathSciNet  Google Scholar 

  40. Prakash, J., Ramesh, K., Tripathi, D., Kumar, R.: Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Microvasc. Res. 118, 162–172 (2018)

    Article  Google Scholar 

  41. Tripathi, D., Sharma, A., Anwar Bég, O., Tiwari, A.: Electrothermal transport in biological systems: an analytical approach for electrokinetically modulated peristaltic flow. J. Therm. Sci. Eng. Appl. 9, (2017)

  42. Tripathi, D., Sharma, A., Bég, O.A.: Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation. Adv. Powder Technol. 29, 639–653 (2018)

    Article  Google Scholar 

  43. Waheed, S., Noreen, S., Hussanan, A.: Study of heat and mass transfer in electroosmotic flow of third order fluid through peristaltic microchannels. Appl. Sci. 9, 2164 (2019)

    Article  Google Scholar 

  44. Parida, M., Padhy, S.: Electro-osmotic flow of a third-grade fluid past a channel having stretching walls. Nonlinear Eng. 8, 56–64 (2019)

    Article  ADS  Google Scholar 

  45. Akgül, M.B., Pakdemirli, M.: Analytical and numerical solutions of electro-osmotically driven flow of a third-grade fluid between micro-parallel plates. Int. J. Non Linear Mech. 43, 985–992 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Noreen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, S., Noreen, S., Tripathi, D. et al. Electrothermal transport of third-order fluids regulated by peristaltic pumping. J Biol Phys 46, 45–65 (2020). https://doi.org/10.1007/s10867-020-09540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-020-09540-x

Keywords

Navigation