Radiation shielding parameters of some antioxidants using Monte Carlo method


In this paper, radiation shielding parameters such as mass attenuation coefficients and half value layer (HVL) of some antioxidants are investigated using MCNPX (version 2.4.0). The validation of the generated MCNPX simulation geometry for antioxidant structures is provided by comparing the results with standard WinXcom data for radiation mass attenuation coefficients of antioxidants. Very good agreement between WİNXCOM and MCNPX was obtained. The results from the validated geometry were used to calculate the shielding parameters of different antioxidants. The radiation attenuation properties of each antioxidant were compared with each other. The results showed that, on average, the highest and the lowest radiation mass attenuation coefficients were observed on hesperidin and delphinidin chloride, respectively. It can be concluded that Monte Carlo simulation is a strong tool and an alternate method where experimental investigations are not possible and a standard simulation setup can be used in further studies for different biological structures. It can also be concluded that the obtained results from this study are very useful for radiology and radiotherapy applications where antioxidants are frequently used.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Ramachandran, L., Nair, C.K.: Radioprotection by tempol: studies on tissue antioxidant levels, hematopoietic and gastrointestinal systems, in mice whole body exposed to sub-lethal doses of gamma radiation. Iran. J. Radiat. Res. 10(1), 1–10 (2012)

    Article  Google Scholar 

  2. 2.

    Little, J.B.: Genomic instability and bystander effects: a historical perspective. Oncogene 45, 6978–6987 (2003)

    Article  Google Scholar 

  3. 3.

    Eric, J.H., Amato J.G.: Radiobiology for the Radiologist. Lippincott Williams & Wilkins (2006)

  4. 4.

    El-Missiry, M.A., Othman, A.I., Alabdan, M.A.: Melatonin for protection against ionizing radiation. Current Topics in Ionizing Radiation Research, Dr. Mitsuru Nenoi (ed.) (2012)

  5. 5.

    Greenberger, J., Kagan, V., Bayir, H., Wipf, P., Epperly, M.: Antioxidant approaches to management of ionizing irradiation injury. Antioxidants (2015). https://doi.org/10.3390/antiox4010082

    Article  Google Scholar 

  6. 6.

    Prasad, K.N.: Rationale for using multiple antioxidants in protecting humans against low doses of ionizing radiation. Br. J. Radiol. 78, 485–492 (2005). https://doi.org/10.1259/bjr/87552880

    Article  Google Scholar 

  7. 7.

    Einor, D., Bonisoli, A., Constantini, D., Mousseau, T.A., Moller, A.P.: Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis. Sci. Total Environ. 548, 463–471 (2016). https://doi.org/10.1016/j.scitotenv.2016.01.027

    ADS  Article  Google Scholar 

  8. 8.

    Borek, C.: Antioxidants and radiation therapy. J. Nutr. 134, 3207–3209 (2004)

    Article  Google Scholar 

  9. 9.

    Barry, H.B., Gutteridge, J.M.C.: Free Radicals in Biology and Medicine, Oxford University Press (2015)

  10. 10.

    RSICC Computer Code Collection. MCNPX User’s Manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications, (2002).

  11. 11.

    Tekin, H.O.: MCNP-X Monte Carlo code application for mass attenuation coefficients of concrete at different energies by modeling 3 × 3 inch nai(tl) detector and comparison with xcom and Monte Carlo data. Sci. Technol. Nucl. Inst. (2016). https://doi.org/10.1155/2016/6547318

    Article  Google Scholar 

  12. 12.

    Tekin, H.O., Sayyed, M.I., Manici, T., Altunsoy, E.E.: Photon shielding characterizations of bismuth modified borate - silicate-tellurite glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.02.009

    Article  Google Scholar 

  13. 13.

    Shams, A.M., Yasser, B., Tekin, H.O., Sayyed, M.I., Khamies, S.S.: Investigations of radiation shielding and elastic properties of PbO-SiO2-B2O3- Na2O glasses using Monte Carlo method. Curr. Appl. Phys. (2018). https://doi.org/10.1016/j.cap.2018.02.018

    ADS  Article  Google Scholar 

  14. 14.

    Tekin, H.O., Singh, V.P., Kara, U., Manici, T., Altunsoy, E.E.: Investigation of nanoparticle effect on radiation shielding property using Monte Carlo method. CBU J. Sci. 12, 2 (2016). https://doi.org/10.18466/cbujos.15586

    Article  Google Scholar 

  15. 15.

    Tekin, H.O., Sayyed, M.I., Shams, A.M.: Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.05.002

    ADS  Article  Google Scholar 

  16. 16.

    Tekin, H.O., Singh, V.P., Manici, T.: Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. (2016). https://doi.org/10.1016/j.apradiso.2016.12.040

    Article  Google Scholar 

  17. 17.

    Tekin, H.O., Manici, T.: Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nucl. Sci. Tech. 28, 95 (2017). https://doi.org/10.1007/s41365-017-0253-4

    Article  Google Scholar 

  18. 18.

    Tekin, H.O., Singh, V.P., Altunsoy, E.E., Manici, T., Sayyed, M.I.: Mass attenuation coefficients of human body organs using MCNPX Monte Carlo code. Iran. J. Med. Phys. https://doi.org/10.22038/ijmp.2017.23478.1230

  19. 19.

    Sayyed, M.I., Al-Zaatreh, M.Y., Dong, M.G., Zaid, M.H.M., Matori, K.A., Tekin, H.O.: A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding. Results Phys. 7, 2528–2533 (2017). https://doi.org/10.1016/j.rinp.2017.07.028

    ADS  Article  Google Scholar 

  20. 20.

    Dong, M.G., El-Mallawany, R., Sayyed, M.I., Tekin, H.O.: Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXcom and MCNP5 code. Radiat. Phys. Chem. 141, 172–178 (2017). https://doi.org/10.1016/j.radphyschem.2017.07.006

    ADS  Article  Google Scholar 

  21. 21.

    Lakshminarayana, G., Baki, S.O., Kaky, K.M., Sayyed, M.I., Tekin, H.O., Lira, A., Kityk, I.V., Mahdi, M.A.: Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Crystal. Solids 471: 222–237 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.06.001.

    ADS  Article  Google Scholar 

  22. 22.

    Tekin, H.O., Sayyed, M.I., Altunsoy, E.E., Manici, T.: Shielding properties and effects of WO3 and PbO on mass attenuation coefficients by using MCNPX code. Digest J. Nanomater. Biostruct. 12, 861–867 (2017)

    Google Scholar 

  23. 23.

    Gerward, L., Guilbert, N., Jensen, K.B.: WinXCom-a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040

    ADS  Article  Google Scholar 

  24. 24.

    Isikli, Z., Oto, B.: Gamma or X-ray attenuation properties of some biochemical compounds. Radiat. Eff. Defects. Solids 172, 3–4 (2017). https://doi.org/10.1080/10420150.2017.1307194

    ADS  Article  Google Scholar 

Download references


The authors thank Dr. H. Shazly for editing the language of this paper.

Author information



Corresponding author

Correspondence to Huseyin Ozan Tekin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tekin, H.O., Karahan, M., Erguzel, T.T. et al. Radiation shielding parameters of some antioxidants using Monte Carlo method. J Biol Phys 44, 579–590 (2018). https://doi.org/10.1007/s10867-018-9507-6

Download citation


  • Antioxidants
  • Mass attenuation coefficients