Skip to main content
Log in

Ionic effects on the temperature–force phase diagram of DNA

  • ORIGINAL PAPER
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Double-stranded DNA (dsDNA) undergoes a structural transition to single-stranded DNA (ssDNA) in many biologically important processes such as replication and transcription. This strand separation arises in response either to thermal fluctuations or to external forces. The roles of ions are twofold, shortening the range of the interstrand potential and renormalizing the DNA elastic modulus. The dsDNA-to-ssDNA transition is studied on the basis that dsDNA is regarded as a bound state while ssDNA is regarded as an unbound state. The ground state energy of DNA is obtained by mapping the statistical mechanics problem to the imaginary time quantum mechanics problem. In the temperature–force phase diagram the critical force F c (T) increases logarithmically with the Na+ concentration in the range from 32 to 110 mM. Discussing this logarithmic dependence of F c (T) within the framework of polyelectrolyte theory, it inevitably suggests a constraint on the difference between the interstrand separation and the length per unit charge during the dsDNA-to-ssDNA transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Owczarzy, R., Vallone, P.M., Gallo, F.J., Paner, T.M., Lane, M.J., Benight, A.S.: Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers 44, 217–239 (1998)

    Article  Google Scholar 

  2. Nelson, P.: Biological Physics: Energy, Information, Life. W. H. Freeman, New York (2003)

    Google Scholar 

  3. Palmeri, J., Manghi, M., Destainville, N.: Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation. Phys. Rev. E 77, 011913 (2008)

    Article  ADS  Google Scholar 

  4. Bockelmann, U., Thomen, P., Heslot, F.: Dynamics of the DNA duplex formation studied by single molecule force measurements. Biophys. J. 87, 3388–3396 (2004)

    Article  ADS  Google Scholar 

  5. Gelbart, W.M., Bruinsma, R.F., Pincus, P.A., Parsegian, V.A.: DNA-inspired electrostatics. Phys. Today 53, 38–44 (2000)

    Article  Google Scholar 

  6. Danilowicz, C., Lee, C.H., Kim, K., Hatch, K., Coljee, V.W., Kleckner, N.E., Prentiss, M.: Single molecule detection of direct, homologous, DNA/DNA pairing. Proc. Natl. Acad. Sci. USA 106, 19824–19829 (2009)

    Article  ADS  Google Scholar 

  7. Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.L., Chatenay, D., Caron, F.: DNA: an extensible molecule. Science 271, 792–794 (1996)

    Article  ADS  Google Scholar 

  8. Vologodskii, A.: DNA extension under the action of an external force. Macromolecules 27, 5623–5625 (1994)

    Article  ADS  Google Scholar 

  9. Cherstvy, A.G.: Torque-induced deformations of charged elastic DNA rods: thin helices, loops, and precursors of DNA supercoiling. J. Biol. Phys. 37, 227–238 (2011)

    Article  Google Scholar 

  10. Neukirch, S., Marko, J.F.: Analytical description of extension, torque, and supercoiling radius of a stretched twisted DNA. Phys. Rev. Lett. 106, 138104 (2011)

    Article  ADS  Google Scholar 

  11. Cocco, S., Monasson, R., Marko, J.F.: Force and kinetic barriers to initiation of DNA unzipping. Phys. Rev. E 65, 041907 (2002)

    Article  ADS  Google Scholar 

  12. Kim, J., Jeon, J., Sung, W.: A breathing wormlike chain model on DNA denaturation and bubble: effects of stacking interactions. J. Chem. Phys. 128, 055101 (2008)

    Article  ADS  Google Scholar 

  13. Jeon, J., Sung, W.: An effective mesoscopic model of double-stranded DNA. J. Biol. Phys. 40, 1–14 (2014)

    Article  Google Scholar 

  14. Bockelmann, U., Essevaz-Roulet, B., Heslot, F.: DNA strand separation studied by single molecule force measurements. Phys. Rev. E 58, 2386 (1998)

    Article  ADS  Google Scholar 

  15. Shankar, R.: Principles of Quantum Mechanics. Plenum Press, New York (1994)

    Book  MATH  Google Scholar 

  16. Nelson, D.R.: Statistical physics of unzipping DNA. Preprint cond-mat/0309559

  17. Marko, J.F., Siggia, E.D.: Stretching DNA. Macromolecules 28, 8759–8770 (1995)

    Article  ADS  Google Scholar 

  18. Podgornik, R., Hansen, P.L., Parsegian, V.A.: Elastic moduli renormalization in self-interacting stretchable polyelectrolytes. J. Chem. Phys. 113, 9343–9350 (2000)

    Article  ADS  Google Scholar 

  19. Chalikian, T.V., Völker, J., Eric Plum, G., Breslauer, K.J.: A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc. Natl. Acad. Sci. USA 96, 7853–7858 (1999)

    Article  ADS  Google Scholar 

  20. Sebastiani, F., Pietrini, A., Longo, M., Comez, L., Petrillo, C., Sacchetti, F., Paciaroni, A.: Melting of DNA nonoriented fibers: a wide-angle X-ray diffraction study. J. Phys. Chem. B 118, 3785–3792 (2014)

    Article  Google Scholar 

  21. Baumann, C.G., Smith, S.B., Bloomfield, V.A., Bustamante, C.: Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. USA 94, 6185–6190 (1997)

    Article  ADS  Google Scholar 

  22. Danilowicz, C., Kafri, Y., Conroy, R.S., Coljee, V.W., Weeks, J., Prentiss, M.: Measurement of the phase diagram of DNA unzipping in the temperature–force plane. Phys. Rev. Lett. 93, 78101 (2004)

    Article  ADS  Google Scholar 

  23. Zhang, X., Chen, H., Le, S., Rouzina, I., Doyle, P.S., Yan, J.: Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching by single-molecule calorimetry. Proc. Natl. Acad. Sci. USA 110, 3865–3870 (2013)

    Article  ADS  Google Scholar 

  24. Wenner, J.R., Williams, M.C., Rouzina, I., Bloomfield, V.A.: Salt dependence of the elasticity and overstretching transition of single DNA molecules. Biophys. J. 82, 3160–3169 (2002)

    Article  Google Scholar 

  25. Nguyen, V.D., Nguyen, T.T., Carloni, P.: DNA like-charge attraction and overcharging by divalent counterions in the presence of divalent co-ions. J. Biol. Phys. 43, 185–195 (2017)

    Article  Google Scholar 

  26. Rau, D.C., Parsegian, V.A.: Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Biophys. J. 61, 246–259 (1992)

    Article  Google Scholar 

  27. Xiao, Y., Huang, Z., Wang, S.: An elastic rod model to evaluate effects of ionic concentration on equilibrium configuration of DNA in salt solution. J. Biol. Phys. 40, 179–192 (2014)

    Article  Google Scholar 

  28. Metzler, R., Hanke, A.: Knots, bubbles, untying, and breathing: probing the topology of DNA and other biomolecules. In: Rieth, M., Schommers, W (eds.) Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers, Ranch (2006)

  29. Rybenkov, V.V., Cozzarelli, N.R., Vologodskii, A.V.: Probability of DNA knotting and the effective diameter of the DNA double helix. Proc. Natl. Acad. Sci. USA 90, 5307–5311 (1993)

    Article  ADS  Google Scholar 

  30. Grgičin, D., Dolanski Babić, S., Ivek, T., Tomić, S., Podgornik, R.: Effect of magnesium ions on dielectric relaxation in semidilute DNA aqueous solutions. Phys. Rev. E 88, 052703 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to M. Fuangfoong and to C. Pattamaprom for their insightful discussions. This work has been supported by the DPST-graduate startup research grant, contract number 24/2557. He would like to express his appreciation to the anonymous reviewers for their constructive comments and invaluable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitichoke Amnuanpol.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Appendices

Appendix A: Ground state eigenenergy of unperturbed Hamiltonian

We derive the expression of the ground state eigenenergy E0(0), (21), of the unperturbed Hamiltonian \(\widehat {\textbf {H}}_{0}\). The ground state eigenenergy \(E_{0}^{(0)} = < \psi _{0}^{(0)} | \widehat {\textbf {H}}_{0} | \psi _{0}^{(0)} >\) gives

$$\begin{array}{@{}rcl@{}} E_{0}^{(0)} & = & \int d^{3}r \left( \psi_{0}^{(0)}(\textbf{r})\right)^{*} \left[-\frac{ (k_{B}T)^{2}} {K} \left( {\nabla} - \frac{1}{k_{B}T} \textbf{F}\right)^{2} - \frac{e^{2}}{\epsilon r}\right] \psi_{0}^{(0)}(\textbf{r}) \\ & = & E_{k} + E_{p} \end{array} $$
(30)

where we define the kinetic-like energy as

$$ E_{k} \equiv \int d^{3}r \left( \psi_{0}^{(0)}(\textbf{r})\right)^{*} \left( -\frac{ (k_{B}T)^{2}} {K}\right) \left( {\nabla} - \frac{1}{k_{B}T} \textbf{F}\right)^{2} \psi_{0}^{(0)}(\textbf{r}) $$
(31)

and we define the potential energy, due to the attractive Coulomb potential as,

$$ E_{p} \equiv \int d^{3}r \left( \psi_{0}^{(0)}(\textbf{r})\right)^{*} \left( - \frac{e^{2}}{\epsilon r}\right) \psi_{0}^{(0)}(\textbf{r}). $$
(32)

Without loss of generality, let the external constant force F be in the \(\widehat {\textbf {r}}\)-direction, i.e., \(\textbf {F}{\kern -.5pt} ={\kern -.5pt} F\widehat {\textbf {r}}\). The Laplacian term takes the form

$$\begin{array}{@{}rcl@{}} \lefteqn{ \left( {\nabla} - \frac{1}{k_{B}T} \textbf{F}\right)^{2} \psi_{0}^{(0)}(\textbf{r}) = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left( r^{2} \frac{ \partial\psi_{0}^{(0)}} {\partial r}\right) - 2\frac{F}{k_{B}T} \frac{ \partial\psi_{0}^{(0)}} {\partial r} + \left( \frac{F}{k_{B}T}\right)^{2} \psi_{0}^{(0)}} \\ & = & - \frac{1}{a} \left( 1 - \frac{Fa}{k_{B}T}\right) \left( 2 - \frac{r}{a} \left( 1 - \frac{Fa}{k_{B}T}\right)\right) \frac{1}{r} \psi_{0}^{(0)} + \frac{2}{a} \frac{F}{k_{B}T} \left( 1 - \frac{Fa}{k_{B}T}\right) \psi_{0}^{(0)} + \left( \frac{F}{k_{B}T}\right)^{2} \psi_{0}^{(0)} \end{array} $$
(33)

in which to obtain the last line we use (19) for the unperturbed ground state eigenfunction ψ0(0)(r). Substituting (33) in (31) and use the normalization of ψ0(0)(r) gives the kinetic-like energy

$$\begin{array}{@{}rcl@{}} E_{k} & = & -\frac{ (k_{B}T)^{2}} {K} \left[- \frac{1}{a} \left( 1 - \frac{Fa}{k_{B}T}\right) 4\pi{\int}_{0}^{\infty} dr r^{2} \left( 2 - \frac{r}{a} \left( 1 - \frac{Fa}{k_{B}T}\right)\right) \frac{1}{r} | \psi_{0}^{(0)}(\textbf{r}) |^{2}\right. \\ & & \hspace{13mm} \left. + \frac{2}{a} \frac{F}{k_{B}T} \left( 1 - \frac{Fa}{k_{B}T}\right) + \left( \frac{F}{k_{B}T}\right)^{2}\right] \\ & = & \frac{1}{K} \left( \frac{k_{B}T}{a}\right)^{2} \left[2\left( \frac{Fa}{k_{B}T}\right)^{2} - 4\frac{Fa}{k_{B}T} + 1\right]. \end{array} $$
(34)

The potential energy is

$$ E_{p} = - \frac{e^{2}}{\epsilon} 4\pi{\int}_{0}^{\infty} dr r^{2} \left( \psi_{0}^{(0)}(\textbf{r})\right)^{*} \frac{1}{r} \psi_{0}^{(0)}(\textbf{r}) = - \left( 1 - \frac{Fa}{k_{B}T}\right) \frac{e^{2}}{\epsilon a}. $$
(35)

Adding the kinetic-like energy E k with the potential energy E p yields the ground state eigenenergy of the unperturbed Hamiltonian

$$\begin{array}{@{}rcl@{}} E_{0}^{(0)} & = & \frac{1}{K} \left( \frac{k_{B}T}{a}\right)^{2} \left[2\left( \frac{Fa}{k_{B}T}\right)^{2} - 4\frac{Fa}{k_{B}T} + 1\right] - \left( 1 - \frac{Fa}{k_{B}T}\right) \frac{e^{2}}{\epsilon a} \\ & = & \frac{2}{K} F^{2} + \left( \frac{e^{2}}{\epsilon k_{B}T} - 4\frac{k_{B}T}{Ka}\right) F + \frac{1}{K} \left( \frac{k_{B}T}{a}\right)^{2} - \frac{e^{2}}{\epsilon a} \\ & = & \frac{2}{K} F^{2} + \left( 2\frac{k_{B}T}{Ka} - 4\frac{k_{B}T}{Ka}\right) F + \frac{1}{2} \frac{e^{2}}{\epsilon a} - \frac{e^{2}}{\epsilon a} \\ & = & \frac{2}{K} \left( F^{2} - \frac{k_{B}T}{a} F - \frac{1}{4} \frac{Ke^{2}}{\epsilon a}\right) \\ & = & \frac{2}{K} \left( F - \frac{1}{2} \frac{k_{B}T}{a}\right)^{2} - \frac{3}{4} \frac{e^{2}}{\epsilon a} \end{array} $$
(36)

which is (21) in the main text.

Appendix B: First-order correction to ground state eigenenergy of full Hamiltonian

We derive the first-order correction, (23), to the ground state eigenenergy of full Hamiltonian \(\widehat {\textbf {H}}\). Using the perturbation \(\widehat {\textbf {H}}^{\prime }\), (13), and the ground state eigenfunction of the unperturbed Hamiltonian ψ0(0)(r), (19), we obtain

$$\begin{array}{@{}rcl@{}} < \psi_{0}^{(0)} | \widehat{\textbf{H}}^{\prime} | \psi_{0}^{(0)} > & = & \frac{e^{2}}{\epsilon\lambda_{D}} \frac{1}{\pi} \left( \frac{ 1 - \frac{Fa}{k_{B}T}} {a}\right)^{3} \sum\limits_{n=0}^{\infty} \frac{ (-1)^{n}} { (n+1)! {\lambda_{D}^{n}}} 4\pi{\int}_{0}^{\infty} dr r^{n+2} \exp\left[-2\left( 1 - \frac{Fa}{k_{B}T}\right) \frac{r}{a}\right] \\ & = & \frac{1}{2} \frac{e^{2}}{\epsilon\lambda_{D}} \sum\limits_{n=0}^{\infty} (-1)^{n} (n+2) \left[\frac{a}{ 2\lambda_{D} \left( 1 - \frac{Fa}{k_{B}T}\right)}\right]^{n} \\ & = & \frac{1}{2} \frac{e^{2}}{\epsilon\lambda_{D}} \left( \sum\limits_{n=0}^{\infty} (-1)^{n} nC^{n} + 2\sum\limits_{n=0}^{\infty} (-1)^{n} C^{n}\right) \end{array} $$
(37)

where defining Ca/2λ D (1 − (Fa/k B T)). The second summation in parentheses \(S \equiv {\sum }_{n=0}^{\infty } (-1)^{n} C^{n}\), which is a geometric series equal to 1/(C + 1). The first summation in parentheses \({\sum }_{n=0}^{\infty } (-1)^{n} nC^{n} = C\partial S/\partial C\) equals − C/(C + 1)2. Hence, we can write explicitly, upon substituting the definition of C,

$$ < \psi_{0}^{(0)} | \widehat{\textbf{H}}^{\prime} | \psi_{0}^{(0)} > = \frac{1}{2} \frac{C+2}{ (C+1)^{2}} \frac{e^{2}}{\epsilon\lambda_{D}} = \left( 1 - \frac{Fa}{k_{B}T}\right) \frac{e^{2}}{\epsilon} \frac{ 4\left( 1 - \frac{Fa}{k_{B}T}\right) \lambda_{D} + a} { \left[2\left( 1 - \frac{Fa}{k_{B}T}\right) \lambda_{D} + a\right]^{2}} $$
(38)

which is (23) in the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amnuanpol, S. Ionic effects on the temperature–force phase diagram of DNA. J Biol Phys 43, 535–550 (2017). https://doi.org/10.1007/s10867-017-9468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-017-9468-1

Keywords

Navigation