Skip to main content

Advertisement

Log in

Molecular dynamics exploration of the binding mechanism and properties of single-walled carbon nanotube to WT and mutant VP35 FBP region of Ebola virus

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

VP35 of Ebola viruses (EBOVs) is an attractive potential target because of its multifunction. All-atom molecular dynamics (MD) simulations and Molecular Mechanics Generalized Born surface area (MM/GBSA) energy calculations are performed to investigate the single-walled carbon nanotube (SWCNT) as an inhibitor in wild-type (WT) VP35 as well as in three primary mutants (K248A, I295A, and K248A/I295A) through docking the SWCNT in the first basic patch (FBP) of VP35. The SWCNTs of all the four systems effectively bind to the FBP. Interestingly, the sites and orientations of the SWCNT binding to the I295A mutant and K248A/I295A double mutants change significantly to accommodate the variation of the VP35 conformation. Moreover, the VDW can provide the major forces for affinity binding in all four systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prins, K.C., Delpeut, S., Leung, D.W., Reynard, O., Volchkova, V.A., Reid, S.P., Ramanan, P., Cardenas, W.B., Amarasinghe, G.K., Volchkov, V.E., Basler, C.F.: Mutations abrogating VP35 interaction with double-stranded RNA render ebola virus avirulent in guinea pigs. J. Virol. 84(6), 3004–3015 (2010)

  2. Kuhn, J.H., Becker, S., Ebihara, H., Geisbert, T.W., Johnson, K.M., Kawaoka, Y., Lipkin, W.I., Negredo, A.I., Netesov, S.V., Nichol, S.T., Palacios, G., Peters, C.J., Tenorio, A., Volchkov, V.E., Jahrling, P.B.: Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 155(12), 2083–2103 (2010)

    Article  Google Scholar 

  3. Feldmann, H., Sanchez, A., Geisbert, T.W.: Filoviridae: Marburg and Ebola viruses. In: Knipe, D.M., Howley, P.M. (eds.) Fields Virology, 6th ed. Lippincott Williams & Wilkins, Philadelphia (2007)

  4. Salvaggio, M.R., Baddley, J.W.: Other viral bioweapons: Ebola and Marburg hemorrhagic fever. Dermatol. Clin 22(3), 291 (2004)

    Article  Google Scholar 

  5. Reed, D.S., Mohamadzadeh, M.: Status and challenges of filovirus vaccines. Vaccine 25(11), 1923–1934 (2007)

    Article  Google Scholar 

  6. Elliott, L.H., Kiley, M.P., McCormick, J.B.: Descriptive analysis of Ebola virus proteins. Virology 147(1), 169–176 (1985)

    Article  Google Scholar 

  7. Muhlberger, E., Weik, M., Volchkov, V.E., Klenk, H.D., Becker, S.: Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J. Virol. 73(3), 2333–2342 (1999)

    Google Scholar 

  8. Basler, C.F., Garcia-Sastre, A.: Viruses and the type I interferon antiviral system: induction and evasion. Int. Rev. Immunol. 21(4–5), 305–337 (2002)

    Article  Google Scholar 

  9. Muhlberger, E., Lotfering, B., Klenk, H.D., Becker, S.: Three of four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J. Virol. 72(11), 8756–8764 (1998)

    Google Scholar 

  10. Haasnoot, J., de Vries, W., Geutjes, E.J., Prins, M., de Haan, P., Berkhout, B.: The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathogens 3(6), 794–803 (2007)

  11. Brown, C.S., Lee, M.S., Leung, D.W., Wang, T.J., Xu, W., Luthra, P., Anantpadma, M., Shabman, R.S., Melito, L.M., MacMillan, K.S., Borek, D.M., Otwinowski, Z., Ramanan, P., Stubbs, A.J., Peterson, D.S., Binning, J.M., Tonelli, M., Olson, M.A., Davey, R.A., Ready, J.M., Basler, C.F., Amarasinghe, G.K.: In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity. J. Mol. Biol. 426(10), 2045–2058 (2014)

  12. Basler, C.F., Mikulasova, A., Martinez-Sobrido, L., Paragas, J., Muhlberger, E., Bray, M., Klenk, H.D., Palese, P., Garcia-Sastre, A.: The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J. Virol. 77(14), 7945–7956 (2003)

    Article  Google Scholar 

  13. St Reid, P., Cardenas, W.B., Basler, C.F.: Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein. Virology 341(2), 179–189 (2005)

    Article  Google Scholar 

  14. Leung, D.W., Shabman, R.S., Farahbakhsh, M., Prins, K.C., Borek, D.M., Wang, T.J., Muhlberger, E., Basler, C.F., Amarasinghe, G.K.: Structural and functional characterization of reston ebola virus VP35 interferon inhibitory domain. J. Mol. Biol. 399(3), 347–357 (2010)

  15. Leung, D.W., Ginder, N.D., Fulton, D.B., Nix, J., Basler, C.F., Honzatko, R.B., Amarasinghe, G.K.: Structure of the Ebola VP35 interferon inhibitory domain. Proc. Natl. Acad. Sci. U. S. A. 106(2), 411–416 (2009)

    Article  ADS  Google Scholar 

  16. Laskowski, R.A., Swindells, M.B.: LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51(10), 2778–2786 (2011)

  17. Krammer, A., Kirchhoff, P.D., Jiang, X., Venkatachalam, C.M., Waldman, M.: LigScore: a novel scoring function for predicting binding affinities. J. Mol. Graph. Model. 23(5), 395–407 (2005)

  18. Zhang, Y.J., Ding, J.N., Feng, T.T., Han, J.G.: Exploring interaction mechanisms of the inhibitor binding to the VP35 IID region of Ebola virus by all atom molecular dynamics simulation method. Proteins: Struct., Funct., Bioinf. 83(12), 2263–2278 (2015)

  19. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  ADS  Google Scholar 

  20. Akita, S., Nishijima, H., Nakayama, Y., Tokumasu, F., Takeyasu, K.: Carbon nanotube tips for a scanning probe microscope: their fabrication and properties. J. Phys. D – Appl. Phys. 32(9), 1044–1048 (1999)

  21. Friedman, S.H., Ganapathi, P.S., Rubin, Y., Kenyon, G.L.: Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. J. Med. Chem. 41(13), 2424–2429 (1998)

    Article  Google Scholar 

  22. Meher, B.R., Wang, Y.X.: Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: analysis of flap dynamics and binding mechanism. J. Mol. Graph. Model. 38, 430–445 (2012)

  23. Bosi, S., Da Ros, T., Spalluto, G., Prato, M.: Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 38(11-12), 913–923 (2003)

    Article  Google Scholar 

  24. Zhu, Z.W., Schuster, D.I., Tuckerman, M.E.: Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Biochemistry 42(5), 1326–1333 (2003)

    Article  Google Scholar 

  25. Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.3r1. 2010.

  26. Schrodinger, LLC. The JyMOL Molecular Graphics Development Component, Version 1.0. 2010.

  27. Schrodinger, LLC. The AxPyMOL Molecular Graphics Plugin for Microsoft PowerPoint, Version 1.0. 2010.

  28. Frey JT, Doren DJ. TubeGen 3.4. University of Delaware, Newark DE: University of Delaware, Newark DE; 2011.

  29. Yong, D., Chun, W., Chowdhury, S., Lee, M.C., Guoming, X., Wei, Z., Rong, Y., Cieplak, P., Ray, L., Taisung, L., Caldwell, J., Junmei, W., Kollmann, P.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24(16), 1999–2012 (2003)

    Article  Google Scholar 

  30. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005)

    Article  Google Scholar 

  31. Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004)

    Article  Google Scholar 

  32. Case, D., et al.: AMBER 12. University of California, San Francisco 2012.

  33. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)

    Article  ADS  Google Scholar 

  34. Darden, T., York, D., Pedersen, L.: Particle Mesh Ewald - an N.LOG(N) method for Ewald Sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

    Article  ADS  Google Scholar 

  35. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical-integration of Cartesian equations of motion of a system with constraints - molecular-dynamics of N-alkanes. J. Comput. Phys. 23(3), 327–341 (1977)

    Article  ADS  Google Scholar 

  36. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)

    Article  Google Scholar 

  37. Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S.H., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A., Cheatham, T.E.: Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33(12), 889–897 (2000)

    Article  Google Scholar 

  38. Feig, M., Im, W., Brooks, C.L.: Implicit solvation based on generalized Born theory in different dielectric environments. J. Chem. Phys. 120(2), 903–911 (2004)

    Article  ADS  Google Scholar 

  39. Gohlke, H., Kiel, C., Case, D.A.: Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RaIGDS complexes. J. Mol. Biol. 330(4), 891–913 (2003)

    Article  Google Scholar 

  40. Zoete, V., Meuwly, M., Karplus, M.: Study of the insulin dimerization: binding free energy calculations and per-residue free energy decomposition. Proteins-Struct Funct Bioinforma 61(1), 79–93 (2005)

    Article  Google Scholar 

  41. Zhao, R.N., Fan, S., Han, J.G., Liu, G.: Molecular dynamics study of segment peptides of Bax, Bim, and Mcl-1 BH3 domain of the apoptosis-regulating proteins bound to the anti-apoptotic Mcl-1 protein. J. Biomol. Struct. Dyn. 33(5), 1067–1081 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11179035), the Yong teacher training Program of the Shanghai Education committee (A1-5701-15-011-49) as well as Physical electronics disciplines (NO: 12XKJC01).

Author Contributions

Yan-Jun Zhang, designed research, performed research, contributed analytic tools, analyzed data, and wrote the paper.

Jing-Na Ding partly analyzed data.

Hui Zhong partly analyzed data.

Chang-Ping Sun partly analyzed data.

Ju-Guang Han modified the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Guang Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Ding, JN., Zhong, H. et al. Molecular dynamics exploration of the binding mechanism and properties of single-walled carbon nanotube to WT and mutant VP35 FBP region of Ebola virus. J Biol Phys 43, 149–165 (2017). https://doi.org/10.1007/s10867-016-9440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9440-5

Keywords

Navigation