Skip to main content
Log in

Tumor proliferation and diffusion on percolation clusters

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We study in silico the influence of host tissue inhomogeneity on tumor cell proliferation and diffusion by simulating the mobility of a tumor on percolation clusters with different homogeneities of surrounding tissues. The proliferation and diffusion of a tumor in an inhomogeneous tissue could be characterized in the framework of the percolation theory, which displays similar thresholds (0.54, 0.44, and 0.37, respectively) for tumor proliferation and diffusion in three kinds of lattices with 4, 6, and 8 connecting near neighbors. Our study reveals the existence of a critical transition concerning the survival and diffusion of tumor cells with leaping metastatic diffusion movement in the host tissues. Tumor cells usually flow in the direction of greater pressure variation during their diffusing and infiltrating to a further location in the host tissue. Some specific sites suitable for tumor invasion were observed on the percolation cluster and around these specific sites a tumor can develop into scattered tumors linked by some advantage tunnels that facilitate tumor invasion. We also investigate the manner that tissue inhomogeneity surrounding a tumor may influence the velocity of tumor diffusion and invasion. Our simulation suggested that invasion of a tumor is controlled by the homogeneity of the tumor microenvironment, which is basically consistent with the experimental report by Riching et al. as well as our clinical observation of medical imaging. Both simulation and clinical observation proved that tumor diffusion and invasion into the surrounding host tissue is positively correlated with the homogeneity of the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Friedl, P., Alexander, S.: Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992–1009 (2011)

    Article  Google Scholar 

  2. Stewart, B.W., Wild, C.P. (eds.): World cancer report 2014. IARC, Lyon (2014)

    Google Scholar 

  3. Christofori, G.: New signals from the invasive front. Nature 441, 444–50 (2006)

    Article  ADS  Google Scholar 

  4. Gupta, G.P., Massagué, J.: Cancer metastasis: building a framework. Cell 127, 679–95 (2006)

    Article  Google Scholar 

  5. Steeg, P.S.: Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006)

    Article  Google Scholar 

  6. Hess, K.R., Varadhachary, G.R., Taylor, S.H., Wei, W., Raber, M.N., Lenzi, R., Abbruzzese, J.L.: Metastatic patterns in adenocarcinoma. Cancer 106, 1624–33 (2006)

    Article  Google Scholar 

  7. Patanaphan, V., Salazar, O.M., Risco, R.: Breast cancer: metastatic patterns and their prognosis. South. Med. J. 81, 1109–12 (1988)

    Article  Google Scholar 

  8. Nguyen, D.X., Bos, P.D., Massagué, J.: Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–84 (2009)

    Article  Google Scholar 

  9. Edlund, M., Sung, S.-Y., Chung, L.W.K.: Modulation of prostate cancer growth in bone microenvironments. J. Cell. Biochem. 91, 686–705 (2004)

    Article  Google Scholar 

  10. Guise, T.A.: Parathyroid hormone-related protein and bone metastases. Cancer 80, 1572–80 (1997)

    Article  Google Scholar 

  11. Chang, A.C.-M., Doherty, J., Huschtscha, L.I., Redvers, R., Restall, C., Reddel, R.R., Anderson, R.L.: STC1 expression is associated with tumor growth and metastasis in breast cancer. Clin. Exp. Metastasis 32, 15–27 (2015)

    Article  Google Scholar 

  12. Ell, B., Mercatali, L., Ibrahim, T., Campbell, N., Schwarzenbach, H., Pantel, K., Amadori, D., Kang, Y.: Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24, 542–56 (2013)

    Article  Google Scholar 

  13. Cheung, K.J., Gabrielson, E., Werb, Z., Ewald, A.J.: Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155, 1639–51 (2013)

    Article  Google Scholar 

  14. Lu, H., Liu, J., Liu, S., Zeng, J., Ding, D., Carstens, R.P., Cong, Y., Xu, X.: Article Exo70 Isoform switching upon epithelial–mesenchymal transition mediates cancer cell invasion. Dev. Cell 27, 560–573 (2013)

    Article  Google Scholar 

  15. Goicoechea, S.M., García-Mata, R., Staub, J., Valdivia, A., Sharek, L., McCulloch, C.G., Hwang, R.F., Urrutia, R., Yeh, J.J., Kim, H.J., Otey, C.A.: Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene 33, 1265–73 (2014)

    Article  Google Scholar 

  16. Ji, H., Cao, R., Yang, Y., Zhang, Y., Iwamoto, H., Lim, S., Nakamura, M., Andersson, P., Wang, J., Sun, Y., Dissing, S., He, X., Yang, X., Cao, Y.: TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat. Commun. 5, 4944 (2014)

    Article  ADS  Google Scholar 

  17. Riemann, A., Schneider, B., Gündel, D., Stock, C., Thews, O., Gekle, M.: Acidic priming enhances metastatic potential of cancer cells. Pflügers Arch. 466, 2127–38 (2014)

  18. Kokolus, K.M., Capitano, M.L., Lee, C.-T., Eng, J.W.-L., Waight, J.D., Hylander, B.L., Sexton, S., Hong, C.-C., Gordon, C.J., Abrams, S.I., Repasky, E.A.: Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc. Natl. Acad. Sci. U. S. A. 110, 20176–81 (2013)

    Article  ADS  Google Scholar 

  19. Minna, J.D., Kurie, J.M., Jacks, T.: A big step in the study of small cell lung cancer. Cancer Cell 4, 163–166 (2003)

    Article  Google Scholar 

  20. Klein, C.A.: The systemic progression of human cancer: a focus on the individual disseminated cancer cell – the unit of selection. Adv. Cancer Res. 89, 35–67 (2003)

    Article  Google Scholar 

  21. Ewing, J.: Neoplastic Diseases: a treatise on tumours. Br. J. Surg. 16, 174–175 (1928)

    Article  Google Scholar 

  22. Paget, S.: The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889)

    Article  Google Scholar 

  23. Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A.E., Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J.M., Dumont-Cole, V.D., Kramer, K., Wexler, L.H., Narendran, A., Schwartz, G.K., Healey, J.H., Sandstrom, P., Jørgen Labori, K., Kure, E.H., Grandgenett, P.M., Hollingsworth, M.A., de Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S.K., Jarnagin, W.R., Brady, M.S., Fodstad, O., Muller, V., Pantel, K., Minn, A.J., Bissell, M.J., Garcia, B.A., Kang, Y., Rajasekhar, V.K., Ghajar, C.M., Matei, I., Peinado, H., Bromberg, J., Lyden, D.: Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015)

    Article  ADS  Google Scholar 

  24. Morris, V.L., Schmidt, E.E., MacDonald, I.C., Groom, A.C., Chambers, A.F.: Sequential steps in hematogenous metastasis of cancer cells studied by in vivo videomicroscopy. Invasion Metastasis 17, 281–96 (1997)

    Google Scholar 

  25. Kreso, A., Dick, J.E.: Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014)

    Article  Google Scholar 

  26. Yang, J., Weinberg, R.A.: Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–29 (2008)

    Article  Google Scholar 

  27. Kalluri, R., Weinberg, R.A.: The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–8 (2009)

    Article  Google Scholar 

  28. Tarin, D., Thompson, E.W., Newgreen, D.F.: The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 65, 5996–6000 (2005).

    Article  Google Scholar 

  29. Radisky, D.C.: Epithelial–mesenchymal transition. J. Cell Sci. 118, 4325–6 (2005)

    Article  Google Scholar 

  30. Thompson, E.W., Newgreen, D.F., Tarin, D.: Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res. 65, 5991–5 (2005).

  31. Thiery, J.P., Acloque, H., Huang, R.Y.J., Nieto, M.A.: Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–90 (2009)

    Article  Google Scholar 

  32. Pattabiraman, D.R., Weinberg, R.A.: Tackling the cancer stem cells – what challenges do they pose? Nat. Rev. Drug Discov. 13, 497–512 (2014)

    Article  Google Scholar 

  33. Wei, S.C., Fattet, L., Tsai, J.H., Guo, Y., Pai, V.H., Majeski, H.E., Chen, A.C., Sah, R.L., Taylor, S.S., Engler, A.J., Yang, J.: Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17(5), 678–688 (2015)

  34. Riching, K.M., Cox, B.L., Salick, M.R., Pehlke, C., Riching, A.S., Ponik, S.M., Bass, B.R., Crone, W.C., Jiang, Y., Weaver, A.M., Eliceiri, K.W., Keely, P.J.: 3D Collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107, 2546–58 (2014)

    Article  ADS  Google Scholar 

  35. Schwab, E.D., Pienta, K.J.: Cancer as a complex adaptive system. Med. Hypotheses 47, 235–241 (1996)

    Article  Google Scholar 

  36. Bratsun, D.A., Merkuriev, D.V., Zakharov, A.P., Pismen, L.M.: Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue. J. Biol. Phys. 42, 107–132 (2016)

    Article  Google Scholar 

  37. Young, J.S.: The invasive growth of malignant tumours: an experimental interpretation based on elastic-jelly models. J. Pathol. Bacteriol. 77, 321–339 (1959)

    Article  Google Scholar 

  38. Montel, F., Delarue, M., Elgeti, J., Malaquin, L., Basan, M., Risler, T., Cabane, B., Vignjevic, D., Prost, J., Cappello, G., Joanny, J.F.: Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett. 107, 188102 (2011)

  39. Guo, C., Levine, H.: A statistical mechanics model for receptor clustering. J. Biol. Phys. 26, 219–34 (2000)

    Article  Google Scholar 

  40. Huang, S., Chen, C.S., Ingber, D.E.: Control of cyclin D1, p27 Kip1, and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell 9, 3179–3193 (1998)

    Article  Google Scholar 

  41. Delarue, M., Montel, F., Caen, O., Elgeti, J., Siaugue, J.-M., Vignjevic, D., Prost, J., Joanny, J.-F., Cappello, G.: Mechanical Control of cell flow in multicellular spheroids. Phys. Rev. Lett. 110, 138103 (2013)

    Article  ADS  Google Scholar 

  42. Delarue, M., Montel, F., Vignjevic, D., Prost, J., Joanny, J.-F., Cappello, G.: Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys. J. 107, 1821–8 (2014)

    Article  ADS  Google Scholar 

  43. Cheng, G., Tse, J., Jain, R.K., Munn, L.L.: Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS One 4, e4632 (2009)

    Article  ADS  Google Scholar 

  44. Desmaison, A., Frongia, C., Grenier, K., Ducommun, B., Lobjois, V.: Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids. PLoS One 8, e80447 (2013)

    Article  ADS  Google Scholar 

  45. Deisboeck, T.S., Berens, M.E., Kansal, A.R., Torquato, S., Stemmer-Rachamimov, A.O., Chiocca, E.A.: Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model. Cell Prolif. 34, 115–134 (2001)

    Article  Google Scholar 

  46. Hughes, M.F., Beck, B.D., Chen, Y., Lewis, A.S., Thomas, D.J.: Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci. 123, 305–32 (2011)

    Article  Google Scholar 

  47. Christensen, K.: Percolation theory. Cambridge University Press, London (2002)

    Google Scholar 

  48. Lee, D.-S., Rieger, H., Bartha, K.: Flow correlated percolation during vascular remodeling in growing tumors. Phys. Rev. Lett. 96, 058104 (2006)

    Article  ADS  Google Scholar 

  49. Stauffer, D., Aharony, A.: Introduction to percolation theory. Taylor & Francis, London (1994)

    MATH  Google Scholar 

  50. Spillman, W.B., Robertson, J.L., Huckle, W.R., Govindan, B.S., Meissner, K.E.: Complexity, fractals, disease time, and cancer. Phys. Rev. E 70, 061911 (2004)

    Article  ADS  Google Scholar 

  51. Amyot, F., Small, A., Boukari, H., Camphausen, K., Gandjbakhche, A.: Topology of the heterogeneous nature of the extracellular matrix on stochastic modeling of tumor-induced angiogenesis. Microvasc. Res. 77, 87–95 (2009)

    Article  Google Scholar 

  52. Baish, J.W., Stylianopoulos, T., Lanning, R.M., Kamoun, W.S., Fukumura, D., Munn, L.L., Jain, R.K.: Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc. Natl. Acad. Sci. U. S. A. 108, 1799–803 (2011)

    Article  ADS  Google Scholar 

  53. Welter, M., Rieger, H.: Physical determinants of vascular network remodeling during tumor growth. Eur. Phys. J. E. Soft Matter. 33, 149–63 (2010)

    Article  Google Scholar 

  54. Wendykier, J., Lipowski, A., Ferreira, A.L.: Coexistence and critical behavior in a lattice model of competing species. Phys. Rev. E 83, 031904 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  55. Lipowski, A., Ferreira, A.L., Wendykier, J.: Critical behavior of a tumor growth model: directed percolation with a mean-field flavor. Phys. Rev. E 86, 041138 (2012)

    Article  ADS  Google Scholar 

  56. Ferreira, A.L., Lipowska, D., Lipowski, A.: Statistical mechanics model of angiogenic tumor growth. Phys. Rev. E 85, 010901 (2012)

    Article  ADS  Google Scholar 

  57. Moglia, B., Guisoni, N., Albano, E.V.: Interfacial properties in a discrete model for tumor growth. Phys. Rev. E 87, 032713 (2013)

    Article  ADS  Google Scholar 

  58. Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M.: Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2, 129–154 (2000)

    Article  MATH  Google Scholar 

  59. Sander, L.M., Deisboeck, T.S.: Growth patterns of microscopic brain tumors. Phys. Rev. E. 66, 051901 (2002)

  60. Murray, J.D.: Mathematical biology II - spatial models and biomedical applications. Springer, New York (2011)

  61. Armstrong, N.J., Painter, K.J., Sherratt, J.A.: A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243, 98–113 (2006)

    Article  MathSciNet  Google Scholar 

  62. Jiang, C., Cui, C., Li, L., Shao, Y.: The anomalous diffusion of a tumor invading with different surrounding tissues. PLoS One 9, e109784 (2014)

    Article  ADS  Google Scholar 

  63. Zhong, W.-R., Shao, Y.-Z., He, Z.-H.: Spatiotemporal fluctuation-induced transition in a tumor model with immune surveillance. Phys. Rev. E 74, 011916 (2006)

    Article  ADS  Google Scholar 

  64. Zhong, W.-R., Shao, Y.-Z., Li, L., Wang, F.-H., He, Z.-H.: Spatiotemporal noise triggering infiltrative tumor growth with immunosurveillance. Europhys. Lett. 82, 20003 (2008)

    Article  ADS  Google Scholar 

  65. Maini, P.K., McElwain, D.L.S., Leavesley, D.: Travelling waves in a wound healing assay. Appl. Math. Lett. 17, 575–580 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ludwig, D., Jones, D.D., Holling, C.S.: Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47, 315 (1978)

    Article  Google Scholar 

  67. Bindschadler, M., McGrath, J.L.: Sheet migration by wounded monolayers as an emergent property of single-cell dynamics. J. Cell Sci. 120, 876–84 (2007)

    Article  Google Scholar 

  68. Khain, E., Katakowski, M., Hopkins, S., Szalad, A., Zheng, X., Jiang, F., Chopp, M.: Collective behavior of brain tumor cells: the role of hypoxia. Phys. Rev. E 83, 031920 (2011)

    Article  ADS  Google Scholar 

  69. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Tse, J.M., Cheng, G., Tyrrell, J.A., Wilcox-Adelman, S.A., Boucher, Y., Jain, R.K., Munn, L.L.: Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl. Acad. Sci. U. S. A. 109, 911–6 (2012)

    Article  ADS  Google Scholar 

  71. Friedman, A., Kim, Y.: Tumor cells’ proliferation and migration under the influence of their environment. Math. Biosci. Eng. 8, 371–383 (2011)

  72. Lee, Y., Andrade, J., Buldyrev, S., Dokholyan, N., Havlin, S., King, P., Paul, G., Stanley, H.: Traveling time and traveling length in critical percolation clusters. Phys. Rev. E 60, 3425–3428 (1999)

    Article  ADS  Google Scholar 

  73. Riihimäki, M., Hemminki, A., Fallah, M., Thomsen, H., Sundquist, K.: Metastatic sites and survival in lung cancer. Lung Cancer 86, 78–84 (2014)

    Article  Google Scholar 

  74. Anderson, A.R.A.: A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22, 163–86 (2005)

    Article  ADS  MATH  Google Scholar 

  75. Calabresi, P., Schein, P.S.: Medical Oncology: Basic Principles and Clinical Management of Cancer. McGraw-Hill, New York (1993)

  76. Kim, Y., Lawler, S., Nowicki, M.O., Chiocca, E.A., Friedman, A.: A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. J. Theor. Biol. 260, 359–71 (2009)

    Article  MathSciNet  Google Scholar 

  77. McDougall, S.R., Anderson, A.R., Chaplain, M.A., Sherratt, J.A.: Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11274394), the Natural Science Foundation of Guangdong Province (Grant No. S2012010010542), the Fundamental Research Funds for the Central Universities (Grant No. 11lgjc12), the National Natural Science Foundation of Guangdong Province (Grant NO. 2014A030313367) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110171110023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzhi Shao.

Ethics declarations

Ethical approval

This study did not involve any human experiments or treatment processes. The physiological and clinical images of tumors were acquired from ordinary medical examinations of patients at the Sun Yat-sen University Cancer Center. These examinations were carried out for therapy only and no additional drugs or measures were used. This study was approved by the ethics committee of the Sun Yat-sen University Cancer Center and every effort was made to maximize the protection of the patients’ privacy (e.g., anonymous analysis of data). The research materials and results were used for scientific purposes without any conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Chongming Jiang and Chunyan Cui contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 35 kb)

ESM 2

(DOC 63 kb)

ESM 3

(DOC 1931 kb)

ESM 4

(DOC 6004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Cui, C., Zhong, W. et al. Tumor proliferation and diffusion on percolation clusters. J Biol Phys 42, 637–658 (2016). https://doi.org/10.1007/s10867-016-9427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9427-2

Keywords

Navigation