Skip to main content
Log in

Probing the binding mechanisms of α-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

α-Tocopherol is a required nutrient for a variety of biological functions. In this study, the binding of α-tocopherol to trypsin and pepsin was investigated using isothermal titration calorimetry (ITC), steady-state and time-resolved fluorescence measurements, circular dichroism (CD) spectroscopy, and molecular modeling methods. Thermodynamic investigations reveal that α-tocopherol binds to trypsin/pepsin is synergistically driven by enthalpy and entropy. The fluorescence experimental results indicate that α-tocopherol can quench the fluorescence of trypsin/pepsin through a static quenching mechanism. The binding ability of α-tocopherol with trypsin/pepsin is in the intermediate range, and one molecule of α-tocopherol combines with one molecule of trypsin/pepsin. As shown by circular dichroism (CD) spectroscopy, α-tocopherol may induce conformational changes of trypsin/pepsin. Molecular modeling displays the specific binding site and gives information about binding forces and α-tocopherol-tryptophan (Trp)/tyrosine (Tyr) distances. In addition, the inhibition rate of α-tocopherol on trypsin and pepsin was studied. The study provides a basic data set for clarifying the binding mechanisms of α-tocopherol with trypsin and pepsin and is helpful for understanding its biological activity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, B., Harjani, J.R., Cormier, N.S., Madarati, H., Atkinson, J., Cosa, G., Pratt, D.A.: Besting vitamin E: sidechain substitution is key to the reactivity of naphthyridinol antioxidants in lipid bilayers. J. Am. Chem. Soc. 135, 1394–1405 (2013)

    Article  Google Scholar 

  2. Singh, U., Devaraj, S., Jialal, I.: Vitamin E, oxidative stress, and inflammation. Annu. Rev. Nutr. 25, 151–174 (2005)

    Article  Google Scholar 

  3. Sano, M., Ernesto, C., Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C.W., Pfeiffer, E., Schneider, L.S., Thal, L.J.: A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s disease cooperative study. N. Engl. J. Med. 336, 1216–1222 (1997)

    Article  Google Scholar 

  4. Boscoboinik, D., Szewczyk, A., Hensey, C., Azzi, A.: Inhibition of cell proliferation by α-tocopherol. J. Biol. Chem. 266, 6188–6194 (1991)

    Google Scholar 

  5. Azzi, A., Gysin, R., Kempná, P., Munteanu, A., Negis, Y., Villacorta, L., Visarius, T., Zingg, J.M.: Vitamin E mediates cell signaling and regulation of gene expression. Ann. N. Y. Acad. Sci. 1031, 86–95 (2004)

    Article  ADS  Google Scholar 

  6. Li, X.R., Wang, G.K., Chen, D.J., Lu, Y.: Binding of ascorbic acid and α-tocopherol to bovine serum albumin: a comparative study. Mol. BioSyst. 10, 326–337 (2014)

  7. Li, X.R., Chen, D.J., Wang, G.K., Lu, Y.: Study of interaction between human serum albumin and three antioxidants: ascorbic acid, α-tocopherol, and proanthocyanidins. Eur. J. Med. Chem. 70, 22–36 (2013)

    Article  Google Scholar 

  8. Maliar, T., Jedinak, A., Kadrabova, J., Sturdik, E.: Structural aspects of flavonoids as trypsin inhibitors. Eur. J. Med. Chem. 39, 241–248 (2004)

    Article  Google Scholar 

  9. Chen, J.M., Montier, T., Férec, C.: Molecular pathology and evolutionary and physiological implications of pancreatitis-associated cationic trypsinogen mutations. Hum. Genet. 109, 245–252 (2001)

    Article  Google Scholar 

  10. Gombos, L., Kardos, J., Patthy, A., Medveczky, P., Szilagyi, L., Malnasi-Csizmadia, A., Graf, L.: Probing conformational plasticity of the activation domain of trypsin: the role of glycine hinges. Biochemistry 47, 1675–1684 (2008)

    Article  Google Scholar 

  11. Higaki, J.N., Gibson, B.W., Craik, C.S.: Evolution of catalysis in the serine proteases. Cold Spring Harb. Symp. Quant. Biol. 52, 615–621 (1987)

    Article  Google Scholar 

  12. Stroud, R.M., Kay, L.M., Dickerson, R.E., Stroud, R.M., Kay, L.M., Dickerson, R.E.: The structure of bovine trypsin: electron density maps of the inhibited enzyme at 5 Å and at 2·7 Å resolution. J. Mol. Biol. 83, 185–192 (1974)

    Article  Google Scholar 

  13. Gole, A., Dash, C., Rao, M., Sastry, M.: Encapsulation and biocatalytic activity of the enzyme pepsin in fatty lipid films by selective electrostatic interactions. Chem. Commun. 16, 297–298 (2000)

    Article  Google Scholar 

  14. Kageyama, T.: Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell. Mol. Life Sci. 59, 288–306 (2002)

    Article  Google Scholar 

  15. Spelzini, D., Peleteiro, J., Picó, G., Farruggia, B.: Polyethyleneglycol–pepsin interaction and its relationship with protein partitioning in aqueous two-phase systems. Colloids Surf. B 67, 151–156 (2008)

  16. Li, H., Pu, J., Wang, Y., Liu, C., Yu, J., Li, T., Wang, R.: Comparative study of the binding of trypsin with bifendate and analogs by spectrofluorimetry. Spectrochim. Acta A 115, 1–11 (2013)

    Article  ADS  Google Scholar 

  17. Zhang, H.M., Wang, Y.Q., Zhou, Q.H.: Fluorimetric study of interaction of benzidine with trypsin. J. Lumin. 130, 781–786 (2010)

    Article  Google Scholar 

  18. He, Q., Lv, Y., Yao, K.: Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem. 101, 1178–1182 (2006)

    Article  Google Scholar 

  19. Gonçalves, R., Mateus, N., Freitas, V.D.: Influence of carbohydrates on the interaction of procyanidin B3 with trypsin. J. Agric. Food Chem. 59, 11794–11802 (2011)

    Article  Google Scholar 

  20. Wang, R., Kang, X., Wang, R., Wang, R., Dou, H., Wu, J., Song, C., Chang, J.: Comparative study of the binding of trypsin to caffeine and theophylline by spectrofluorimetry. J. Lumin. 138, 258–266 (2013)

    Article  Google Scholar 

  21. Campos, L.A., Sancho, J.: The active site of pepsin is formed in the intermediate conformation dominant at mildly acidic pH. FEBS Lett. 538, 89–95 (2003)

    Article  Google Scholar 

  22. Dobreva, M.A., Frazier, R.A., Mueller-Harvey, I., Clifton, L.A., Gea, A., Green, R.J.: Binding of pentagalloyl glucose to two globular proteins occurs via multiple surface sites. Biomacromolecules 12, 710–715 (2011)

    Article  Google Scholar 

  23. Wua, H., Zhao, X., Wang, P., Dai, Z., Zou, X.: Electrochemical site marker competitive method for probing the binding site and binding mode between bovine serum albumin and alizarin red S. Electrochim. Acta 56, 4181–4187 (2011)

    Article  Google Scholar 

  24. Neamtu, S., Mic, M., Bogdan, M., Turcu, I.: The artifactual nature of stavudine binding to human serum albumin. A fluorescence quenching and isothermal titration calorimetry study. J. Pharm. Biomed. Anal. 72, 134–138 (2013)

    Article  Google Scholar 

  25. Wu, X., Wang, W.P., Zhu, T., Liang, T., Lu, F.Q., He, W., Zhang, H., Liu, Z., He, S.H., Gao, K., He, Z.: Phenylpropanoid glycoside inhibition of pepsin, trypsin and α-chymotrypsin enzyme activity in Kudingcha leaves from Ligustrum purpurascens. Food Res. Int. 54, 1376–1382 (2013)

    Article  Google Scholar 

  26. Burnouf, D., Ennifar, E., Guedich, S., Puffer, B., Hoffmann, G., Bec, G., Disdier, F., Baltzinger, M., Dumas, P.: kinITC: A new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry. J. Am. Chem. Soc. 134, 559–565 (2012)

    Article  Google Scholar 

  27. Cheng, Z.: Studies on the interaction betweens copoletin and two serum albumins by spectroscopic methods. J. Lumin. 132, 2719–2729 (2012)

    Article  Google Scholar 

  28. Lakowicz, J.R., Weber, G.: Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochem. 12, 4161–4170 (1973)

  29. Shen, H., Gu, Z., Jian, K., Qi, J.: In vitro study on the binding of gemcitabine to bovine serum albumin. J. Pharm. Biomed. Anal. 75, 86–93 (2013)

    Article  Google Scholar 

  30. Samari, F., Hemmateenejad, B., Shamsipur, M., Rashidi, M., Samouei, H.: Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: a spectroscopic approach. Inorg. Chem. 51, 3454–3464 (2012)

    Article  Google Scholar 

  31. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, third ed., Springer Science & Business Media, pp. 11. New York (2006)

  32. Zhang, G.W., Wang, L., Pan, J.H.: Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. J. Agric. Food Chem. 60, 2721–2729 (2012)

    Article  Google Scholar 

  33. Ware, W.R.: Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J. Phys. Chem. 66, 455–458 (1962)

    Article  Google Scholar 

  34. Bi, S., Ding, L., Tian, Y., Song, D., Zhou, X., Liu, X., Zhang, H.: Investigation of the interaction between flavonoids and human serum albumin. J. Mol. Struct. 703, 37–45 (2004)

    Article  ADS  Google Scholar 

  35. Bi, S., Song, D., Tian, Y., Zhou, X., Liu, Z., Zhang, H.: Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim. Acta A 61, 629–636 (2005)

    Article  ADS  Google Scholar 

  36. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, third ed., Springer Science & Business Media, pp. 15. New York (2006)

  37. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, third ed., Springer Science & Business Media, pp. 281. New York (2006)

  38. Chai, J., Xu, Q., Dai, J., Liu, R.: Investigation on potential enzyme toxicity of clenbuterol to trypsin. Spectrochim. Acta A 105, 200–206 (2013)

    Article  ADS  Google Scholar 

  39. Chi, Z., Liu, R., Zhang, H.: Noncovalent interaction of oxytetracycline with the enzyme trypsin. Biomacromolecules 11, 2454–2459 (2010)

    Article  Google Scholar 

  40. Mu, Y., Lin, J., Liu, R.: Interaction of sodium benzoate with trypsin by spectroscopic techniques. Spectrochim. Acta A 83, 130–135 (2011)

    Article  ADS  Google Scholar 

  41. Zeng, H., You, J., Liang, H., Qi, T., Yang, R., Qu, L.: Investigation on the binding interaction between silybin and pepsin by spectral and molecular docking. Int. J. Biol. Macromol. 67, 105–111 (2014)

    Article  Google Scholar 

  42. Ibarz, A., Garvín, A., Garza, S., Pagán, J.: Toxic effect of melanoidins from glucose-asparagine on trypsin activity. Food Chem. Toxic. 47, 2071–2075 (2009)

  43. Huber, R., Bode, W.: Structural basis of the activation and action of trypsin. Acc. Chem. Res. 11, 114–122 (1978)

    Article  Google Scholar 

  44. Jin, K.S., Rho, Y., Kim, J., Kim, H., Kim, I.J., Ree, M.: Synchrotron small-angle X-ray scattering studies of the structure of porcine pepsin under various pH conditions. J. Phys. Chem. B 112, 15821–15827 (2008)

    Article  Google Scholar 

  45. Shen, L., Xu, H., Huang, F., Li, Y., Xiao, H., Yang, Z., Hu, Z., He, Z., Zeng, Z., Li, Y.: Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods. Spectrochim. Acta A 135, 256–263 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Research Project of Colleges and Universities of Henan Province (15A150004), the Doctoral Startup Fund of Xinxiang Medical University (505078), the Foundation for Fostering of Xinxiang Medical University (2014QN122) and the National Natural Science Foundation (81401470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangrong Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ni, T. Probing the binding mechanisms of α-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods. J Biol Phys 42, 415–434 (2016). https://doi.org/10.1007/s10867-016-9415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9415-6

Keywords

Navigation