Skip to main content
Log in

Multi-scale modeling of complex neuronal networks: a view towards striatal cholinergic pattern formations

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The phenomena related to brain function occur as the interplay of various modules at different spatial and temporal scales. Particularly, the integration of the dynamical behavior of cells within the complex brain topology reveals a heterogeneous multi-scale problem, which has, to date, mainly been addressed by methods of statistical physics such as mean-field approximations. In contrast, the present study introduces an abstract mathematical model of a deterministic nature that provides a robust integral transformation of the microscopic activities into macroscopic spatiotemporal patterns. The existence of the transformation operator is guaranteed by the convergence of a repetitive patching of the network domain with its fundamental domains that express the local topologies of the tissue. Depending on the choice of the local connectivity function, this framework represents a computationally efficient generalization of the classical Kirchhoff’s, Hebbian, and Hopfield’s approaches. The capabilities of this multi-scale method have been evaluated within the structure of the dorsal striatum of rats, a brain region with major involvement in motor and cognitive information processing. Numerical simulations suggest the formation of characteristic spatiotemporal patterns due to the activation of cholinergic interneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albert, R., Barabasi, A.L.: Topology of complex networks: local events and universality. Phys. Rev. Lett. 85, 5234 (2000)

    Article  ADS  Google Scholar 

  2. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223, 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  4. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: Topological properties of metabolic networks. Nature 407, 651–654 (2000)

    Article  ADS  Google Scholar 

  5. Kiss, T., Erdi, P.: Mesoscopic neurodynamics. Biosystems 64, 119–126 (2002)

    Article  Google Scholar 

  6. Amari, S.: Field theory of self-organizing neural nets. IEEE Trans. Syst. Man Cybern. 13, 741–748 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grifth, J.A.: A field theory of neural nets. I. Derivation of field equations. Bull. Math. Biophys. 25, 111–120 (1963)

    Article  MathSciNet  Google Scholar 

  8. Wilson, H.R., Cowan, J.: A mathematical theory of the functional dynamics of cortical and thalamic neurons tissue. Kybernetik 13, 55–80 (1973)

    Article  MATH  Google Scholar 

  9. Ventriglia, F.: Kinetic approach to neural systems. Bull. Math. Biol. 36, 534–544 (1974)

    Google Scholar 

  10. Ventriglia, F.: Neural Modeling and Neural Networks, Chapter Towards a Kinetic Theory of Cortical-Like Neural Fields, pp. 217–249. Pergamon Press, Oxford (1994)

    Google Scholar 

  11. Chronister, R.B., Farnell, K.E., Marco, L.A., White, Jr. L.E.: The rodent neostriatum: a Golgi analysis. Brain Res. 108, 37–46 (1976)

    Article  Google Scholar 

  12. Herkenham, M., Edley, S.M., Stuart, J.: Cell clusters in the nucleus accumbens of the rat, and the mosaic relationship of opiate receptors, acetylcholinesterase and subcortical afferent terminations. Neuroscience 11, 561–593 (1984)

    Article  Google Scholar 

  13. Mensah, P.L.: The internal organization of the mouse caudate nucleus: evidence for cell clustering and regional variation. Brain Res. 137, 53–66 (1977)

    Article  Google Scholar 

  14. Mensah, P.L.: Distribution of the largest neuron in mouse caudate-putamen nucleus: its position in large-cell-medium-cell clusters. Exp. Brain Res. 38, 267–271 (1980)

    Article  Google Scholar 

  15. Andersson, C., Hamer, R.M., Lawler, C.P., Mailman, R.B., Lieberman, J.A.: Striatal volume changes in the rat following long-term administration of typical and atypical antipsychotic drugs. Neuropsychopharmacology 27, 143–151 (2002)

    Article  Google Scholar 

  16. Oorschot, D.E.: Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia. J. Comp. Neurol. 366, 580–599 (1996)

    Article  Google Scholar 

  17. Carrillo-Reid, L., Tecuapetla, F., Tapia, D., Hernandez-Cruz, A., Galarraga, E., Drucker-Colin, E., Bargas, J.: Encoding network states by striatal cell assemblies. J. Neurophysiol. 99, 1435–1450 (2008)

    Article  Google Scholar 

  18. Grillner, S.: Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006)

    Article  Google Scholar 

  19. Pisani, A., Bernardi, G., Ding, J., Surmeier, D.J.: Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 30, 545–553 (2007)

    Article  Google Scholar 

  20. Kemp, J.M., Powell, T.P.: The synaptic organization of the caudate nucleus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 403–412 (1971)

    Article  ADS  Google Scholar 

  21. Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, Jr. F.J., Sibley, D.R.: D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990)

    Article  ADS  Google Scholar 

  22. Grofova, I.: The identification of striatal and pallidal neurons projecting to substantia nigra: an experimental study by means of retrograde axonal transport of horseradish peroxidase. Brain Res. 91, 286–291 (1975)

    Article  Google Scholar 

  23. DiFiglia, M., Pasik, P., Pasik, T.: A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res. 114, 245–256 (1976)

    Article  Google Scholar 

  24. Gerfen, C.R.: Synaptic organization of the striatum. J. Electron Microsc. Tech. 10, 265–281 (1988)

    Article  Google Scholar 

  25. Bolam, J.P., Wainer, B.H., Smith, A.D.: Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12, 711–718 (1984)

    Article  Google Scholar 

  26. Kawaguchi, Y.: Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents. J. Neurophysiol. 67, 1669–1682 (1992)

    Google Scholar 

  27. Kawaguchi, Y.: Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci. 13, 4908–4923 (1993)

    Google Scholar 

  28. Kawaguchi, Y., Wilson, C.J., Augood, S.J., Emson, P.C.: Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527–535 (1995)

    Article  Google Scholar 

  29. Tashiro, Y., Sugimoto, T., Hattori, T., Uemura, Y., Nagatsu, I., Kikuchi, H., Mizuno, N.: Tyrosine hydroxylase-like immunoreactive neurons in the striatum of the rat. Neurosci. Lett. 97, 610 (1989)

    Article  Google Scholar 

  30. Betarbet, R., Turner, R., Chockkan, V., DeLong, M.R., Allers, K.A., Walters, J., Levey, A.I., Greenamyre, J.T.: Dopaminergic neurons intrinsic to the primate striatum. J. Neurosci. 17, 6761–6768 (1997)

    Google Scholar 

  31. Dube, L., Smith, A.D., Bolam, J.P.: Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat’s neostriatum. J. Comp. Neurol. 267, 455–471 (1988)

    Article  Google Scholar 

  32. Flores-Hernandez, J., Galarraga, E., Bargas, J.: Dopamine selects glutamatergic inputs to neostriatal neurons. Synapse 25, 185–195 (1997)

    Article  Google Scholar 

  33. Freund, T.F., Powell, J.F., Smith, A.D.: Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13, 1189–1215 (1984)

    Article  Google Scholar 

  34. Beckstead, R.M.: A pallidostriatal projection in the cat and monkey. Brain Res. Bull. 11, 629–632 (1983)

    Article  Google Scholar 

  35. Kita, H., Kitai, S.T.: Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J. Comp. Neurol. 260, 435–452 (1987)

    Article  Google Scholar 

  36. Bolam, J.P., Ingham, C.A., Izzo, P.N., Levey, A.I., Rye, D.B., Smith, A.D., Wainer, B.H.: Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res. 397, 279–289 (1986)

    Article  Google Scholar 

  37. Bourgain, J.: On Lipschitz embedding of metric spaces in Hilbert space. Isr. J. Math. 151, 111–124 (1985)

    Google Scholar 

  38. Rayport, S.: Visualizing striatal networks. Focus on: encoding network states by striatal assemblies. J. Neurophysiol. 99, 1053–1054 (2008)

    Article  Google Scholar 

  39. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  40. Boraud, T., Brown, P., Goldberg, J.A., Graybiel, A.M., Magill, P.J.: Oscillations in the basal ganglia: the good, the bad, and the unexpected. In: The Basal Ganglia, vol. VIII, pp. 3–25 (2005)

  41. Alexander, G.E., Wickens, J.R.: Analysis of striatal dynamics: the existence of two modes of behavior. J. Theor. Biol. 163, 413–438 (1993)

    Article  Google Scholar 

  42. Wickens, J.R., Kotter, R., Alexander, M.E.: Effects of local connectivity on striatal function: simulation and analysis of a model. Synapse 20, 281–298 (1995)

    Article  Google Scholar 

  43. Fenno, L., Yizhar, O., Deisseroth, K.: The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011)

    Article  Google Scholar 

  44. Spanagel, R., Bartsch, D., Brors, B., Dahmen, N., Deussing, J., Eils, R., Ende, G., Gallinat, J., Gebicke-Haerter, P., Heinz, A., Kiefer, F., Jäger, W., Mann, K., Matthäus, F., Nöthen, M., Rietschel, M., Sartorius, A., Schütz, G., Sommer, W.H., Sprengel, R., Walter, H., Wichmann, E., Wienker, T., Wurst, W., Zimmer, A.: An integrated genome research network for studying the genetics of alcohol addiction. Addict. Biol. 15, 369–379 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bundesministerium für Bildung und Forschung (NGFN Plus; FKZ: 01GS08152, FKZ: 01GS08155 see under www.ngfn-alkohol.de and Spanagel et al. [44]; FKZ: 01GS08151 and funding from the Bernstein Center for Computational Neuroscience initiative; FKZ: 01GQ1003B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Noori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noori, H.R. Multi-scale modeling of complex neuronal networks: a view towards striatal cholinergic pattern formations. J Biol Phys 38, 597–606 (2012). https://doi.org/10.1007/s10867-012-9274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9274-8

Keywords

Navigation