Skip to main content

Advertisement

Log in

Interaction Between Some Monosaccharides and Aspartic Acid in Dilute Aqueous Solutions

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Interaction between aspartic acid and d-glucose, d-galactose, and d-fructose has been studied by isothermal titration calorimetry, calorimetry of dissolution, and densimetry. It has been found that d-glucose and d-fructose form thermodynamically stable associates with aspartic acid, in contrast to d-galactose. The selectivity in the interaction of aspartic acid with monosaccharides is affected by their stereochemical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, L.C., Bewley, C.A.: Potent inhibition of HIV-1 fusion by cyanovirin-N requires a single high affinity carbohydrate binding site: characterization of low affinity carbohydrate binding site knockout mutants. J. Mol. Biol. 318, 1–8 (2002)

    Article  ADS  Google Scholar 

  2. Westerlund, B., Korhonen, T.K.: Bacterial proteins binding to the mammalian extracellular matrix. Mol. Microbiol. 9, 687–694 (1993)

    Article  Google Scholar 

  3. Lemieux, R.U.: The origin of the specificity in the recognition of oligosaccharides by proteins. Chem. Soc. Rev. 18, 347–374 (1989)

    Article  Google Scholar 

  4. Gorelic, E., Galili, U., Raz, A.: On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 20, 245–277 (2001)

    Article  Google Scholar 

  5. Nidetzky, B., Eis, C., Albert, M.: Role of non-covalent enzyme-substrate interactions in the reaction catalysed by cellobiose phosphorylase from Cellulomonas uda. Biochem. J. 351, Pt.1. 649–659 (2000)

    Article  Google Scholar 

  6. Toone, E.J.: Structure and energies of protein-carbohydrate complexes. Curr. Opin. Struct. Biol. 4, 719–728 (1994)

    Article  Google Scholar 

  7. Weis, W.I., Drickamer, K.: Structural basis of lectin-carbohydrate recognition. Ann. Rev. Biochem. 65, 441–473 (1996)

    Article  Google Scholar 

  8. Ambrosi, M., Cameron, N.R., Davis, B.G.: Lectins: tools for the molecular understanding of the glycocode. Organ. Biomol. Chem. 3, 1593–15608 (2005)

    Article  Google Scholar 

  9. Cheng, Y., Shim, G., Kang, D., Kim, Y.: Carbohydrate binding specificity of pea lectin studied by NMR spectroscopy and molecular dynamics simulations. J. Mol. Struct. 475, 219–232 (1999)

    Article  ADS  Google Scholar 

  10. Lebedeva, N.Sh., Mikhailovsky, K.V., Vyugin, A.I.: Differential calorimeter of titration. Russ. J. Phys. Chem. 75, 1140–1142 (2001)

    Google Scholar 

  11. Parfenyuk, E.V., Davydova, O.I., Lebedeva, N.Sh.: Interactions of d-maltose and sucrose with some amino acids in aqueous solutions. J. Solution Chem. 33, 1–10 (2004)

    Article  Google Scholar 

  12. Volkova, N.L., Parfenyuk, E.V.: Selective interactions of 18-crown-6 with d-glucose and d-galactose in aqueous solutions: titration calorimetry, densimetry, viscosimetry. Thermochim. Acta. 435, 108–112 (2005)

    Article  Google Scholar 

  13. Banipal, P.K., Banipal, T.S., Lark, B.S., Ahluwalia, J.C.: Partial molar heat capacities and volumes of some mono- di- and tri-saccharides in water at 298.15, 308.15 and 318.15 K. J. Chem. Soc. Faraday Trans. 93, 81–87 (1997)

    Article  Google Scholar 

  14. Barone, G.: Physical chemistry of aqueous solutions of oligosaccharides. Thermochim. Acta. 162, 17–30 (1990)

    Article  Google Scholar 

  15. Dey, P.C., Motin, M.A., Biswas, T.K., Huque, E.M.: Apparent molar volume and viscosity studies on some carbohydrates in solutions. Monatsh. Chem. 134, 797–809 (2003)

    Google Scholar 

  16. Schmidt, R.K., Karplus, M., Brady, J.M.: The anomeric equilibrium in d-xylose: free energy and the role of solvent structuring. J. Am. Chem. Soc. 118, 541–546 (1996)

    Article  Google Scholar 

  17. Tvarovska, I.: Theoretical chemistry of biological systems (edited by G. Náray-Szabó), pp. 283–348. Elsevier, Amsterdam (1986)

    Google Scholar 

  18. Balk, R.W., Somsen, G.: Conformational aspects of the salvation of polyhydroxy compounds in binary mixtures of N,N-dimethylformamide and water. J. Solution Chem. 17, 139–152 (1988)

    Article  Google Scholar 

  19. Aoyama, Y., Tanaka, Y., Sugahara, S.: Molecular recognition. 5. Molecular recognition of sugars via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle. J. Am. Chem. Soc. 111, 5397–5404 (1989)

    Article  Google Scholar 

  20. Král, V., Rusin, O., Charvátová, J., Anzenbacher, P., Fogl, J.: Porphyrin phosphonates: novel anionic receptors for saccharide recognition. Tetrahedron Lett. 41, 10147–10151 (2000)

    Article  Google Scholar 

  21. Volkova, N.L., Parfenyuk, E.V.: Parameters of the formation of molecular complexes in d-glucose–(d-galactose)–15-crown-5–water ternary solutions. Russ. J. Phys. Chem. A 81, 1151–1155 (2007)

    Article  Google Scholar 

  22. Gabius, H.-J.: Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87, 108–121 (2000)

    Article  ADS  Google Scholar 

  23. Parfenyuk, E.V., Davydova, O.V.: Stability constants for associates of saccharose and raffinose with glycine and dl-alanine in aqueous solutions. Russ. J. Phys. Chem. 78, 933–936 (2004)

    Google Scholar 

  24. Kulikova, G.A., Parfenyuk, E.V.: Influence of side chains of l-amino acids on their interaction with d-glucose in dilute aqueous solutions. J. Solut. Chem. (2008) (in press)

  25. Gurney, R.W.: Ionic processes in solution. McGraw-Hill, New York (1954)

    Google Scholar 

  26. Mishra, A.K., Ahluwalia, J.C.: Apparent molal volumes of amino acids, N-acetylamino acids, and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984)

    Article  Google Scholar 

  27. Hedwig, G.R., Lilley, T.H., Linsdell, H.: Calorimetric and volumetric studies of the interactions of some amides in water and in 6 mol dm-3 aqueous guanidinium chloride. J. Chem. Soc. Faraday Trans. 87, 2975–2982 (1991)

    Article  Google Scholar 

  28. Barone, G., Castronuovo, G., Del Vecchio, P., Elia, V., Tosto, M.T.: Thermodynamics of alcohols and monosaccharides in aqueous solutions of biuret at 25°C. J. Solution Chem. 17, 925–936 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Parfenyuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulikova, G.A., Parfenyuk, E.V. Interaction Between Some Monosaccharides and Aspartic Acid in Dilute Aqueous Solutions. J Biol Phys 33, 247–254 (2007). https://doi.org/10.1007/s10867-008-9057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9057-4

Keywords

Navigation