Skip to main content
Log in

Molecular Interactions of Pyridoxine Hydrochloride in Aqueous Mixed Solutions of D-Glucose, D-Fructose, and D-Lactose at Different Temperatures

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Density and ultrasonic velocity values for solutions of pyridoxine hydrochloride in aqueous mixed solutions containing D-glucose, D-fructose, and D-lactose have been obtained for various concentrations and at temperatures 298.15–313.15 K. Volumetric and acoustic parameters such as partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities were determined using density and ultrasonic velocity data. The analysis of the obtained data has been done by using Masson’s equation and interpretation was done in terms of solute–solute and solute–solvent interactions. The pyridoxine hydrochloride acts as a structure breaker in water as well as in binary aqueous mixed solutions of D-glucose, D‑fructose, and D-lactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. WHO Model Formulary 2008 (World Health Organization, 2009), p. 496. Retrieved Dec. 8, 2016.

  2. https://www.drugs.com/monograph/pyridoxine-hydrochloride.html.

  3. R. C. Bonadonna, E. Bonora, S. D. Prato, M. Saccomani, C. Cobelli, Natali, A. F. Silvia, P. Neda, F. Eleuterio, B. Dennis, D. Fronzo, A. Ralph, and G. Giovanni, Diabetes 45, 915 (1996).

    Article  PubMed  Google Scholar 

  4. G. A. Bray, S. J. Nielsen, and B. M Popkin, Am. J. Clin. Nutr. 79, 537 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. I. Banik and M. N. Roy, J. Mol. Liq. 169, 8 (2012).

    Article  CAS  Google Scholar 

  6. M. Sahin and E. Ayranci, J. Chem. Thermodyn. 43, 177 (2011).

    Article  CAS  Google Scholar 

  7. S. Kant and S. Kumar, J. Chem. Eng. Data 58, 1294 (2013).

    Article  CAS  Google Scholar 

  8. X. Jiang, C. Zhu, and Y. Ma, J. Chem. Thermodyn. 71, 50 (2014).

    Article  CAS  Google Scholar 

  9. G. Ayranci, M. Sahin, and E. Ayranci, J. Chem. Thermodyn. 39, 1620 (2007).

    Article  CAS  Google Scholar 

  10. T. S. Banipal, H. Singh, P. K. Banipal, and V. Singh, Thermochim. Acta 553, 31 (2013).

    Article  CAS  Google Scholar 

  11. S. S. Dhondge, D. W. Deshmukh, L. J. Paliwal, and P. N. Dahasahasra, J. Chem. Thermodyn. 67, 217 (2013).

    Article  CAS  Google Scholar 

  12. M. L. Parmar and R. C. Thakur, J. Mol. Liq. 128, 85 (2006).

    Article  CAS  Google Scholar 

  13. R. C. Thakur, R. Sharma, and M. Bala, J. Mater. Environ. Sci. 7, 3415 (2016).

    CAS  Google Scholar 

  14. S. Kant and K. Sharma, Chem. Sci. Trans. 2, 911 (2013).

    CAS  Google Scholar 

  15. T. S. Banipal, H. Singh, and P. K Banipal, Thermochim. Acta 572, 6 (2013).

    Article  CAS  Google Scholar 

  16. V. Singh, D. Singh and R. L. Gardas, Ind. Eng. Chem. Res. 54, 2237 (2015).

    Article  CAS  Google Scholar 

  17. X. Xu, Z. Chunying, and M. Youguang, J. Chem. Eng. Data 60, 1535 (2015).

    Article  CAS  Google Scholar 

  18. R. Sharma, R. C. Thakur, B. Sani, and H. Kumar, Russ. J. Phys. Chem. 91, 2389 (2017).

    Article  CAS  Google Scholar 

  19. R. C. Thakur and R. Sharma, Russ. J. Phys. Chem. 91, 1703 (2017).

    Article  CAS  Google Scholar 

  20. F. J. Millero and J. H. Knox, J. Chem. Eng. Data 18, 407 (1973).

    Article  CAS  Google Scholar 

  21. L. G. Hepler, Canad. J. Chem. 47, 4613 (1969).

    Article  CAS  Google Scholar 

  22. M. A. Cheema, P. Taboada, S. Barbosa, E. Castro, M. Siddiq, and V. A. Mosquera, J. Chem. Thermodyn. 40, 298 (2008).

    Article  CAS  Google Scholar 

  23. J. E. Desnoyers, R. Lisi, C. Ostiguy, and G. Perron, Solution Chemistry of Surfactants (Plenum, New York, 1979).

    Google Scholar 

  24. J. E. Desnoyers, G. Perron and A. H. Roux, Surfactant Solutions New Methods of Investigation (Marcel Dekker, New York, 1987).

    Google Scholar 

  25. M. Hackel, H. J. Hinz and G. R. Hedwig, Biophys. Chem. 82, 35 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. F. Franks, Water a Comprehensive Treatise, Aqueous Solutions of Amphiphiles and Macromolecules (Plenum, New York, 1975).

    Book  Google Scholar 

  27. C. M. Romeroand and F. Negrete, Phys. Chem. Liq. 42, 261 (2004).

    Article  CAS  Google Scholar 

  28. L. G. Hepler, Canad. J. Chem. 47, 4613 (1969).

    Article  CAS  Google Scholar 

  29. F. J. Millero, in Structure and Transport Processes in water and Aqueous Solution, Ed. by R. A. Horne (Wiley-Interscience, New York, 1971).

    Google Scholar 

  30. F. J. Millero and W. Drost-Hansen, J. Phys. Chem. 72, 1758 (1968).

    Article  CAS  Google Scholar 

  31. F. J. Millero, Chem. Rev. 71, 147 (1971).

    Article  CAS  Google Scholar 

  32. H. Shekaari and E. Armanfar, Fluid Phase Equilib. 303, 120 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to Department of Chemistry, M.D.U, Rohtak, (Haryana) for proving the instrumentation facilities to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Thakur.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi Sharma, Thakur, R.C. Molecular Interactions of Pyridoxine Hydrochloride in Aqueous Mixed Solutions of D-Glucose, D-Fructose, and D-Lactose at Different Temperatures. Russ. J. Phys. Chem. 92, 2685–2692 (2018). https://doi.org/10.1134/S0036024418130241

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418130241

Keywords:

Navigation