Skip to main content
Log in

A Numerical Study of the Hydrodynamic Stable Concentration Boundary Layers in a Membrane System Under Microgravitational Conditions

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

On the basis of the classic formula of the concentration Rayleigh number and the Kedem–Katchalsky equation for diffusive membrane transport, we derived the equations of sixteenth order which show the dependence of the thicknesses of the concentration boundary layers on the difference of the solution concentrations, the concentration Rayleigh number, the solute permeability coefficient of the membrane and the diffusion coefficients in the solution, the kinematic viscosity of the solution, the density of solutions, the temperature and gravitational acceleration. The obtained equation has numerical solutions in the first, third and fourth quadrant of a co-ordinate system. However, only two solutions from the first quadrant of the co-ordinate system have physical meaning. Confining ourselves to the set of solutions with physical meaning only, the thicknesses of concentration boundary layers for different parameters occurring in the obtained equation were calculated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katchalsky, A., Curran, P.F.: Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge (1965)

    Google Scholar 

  2. Barry, P.H., Diamond, J.M.: Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64, 763–872 (1984)

    Google Scholar 

  3. Cogoli, A., Gründer, F.K.: Gravity effects on single cells: techniques, findings and theory. Adv. Space Biol. Med. 1, 183–248 (1991)

    Google Scholar 

  4. Rubinstein, I., Zaltzman, B.: Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 62, 2238–2251 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Rubinstein, I., Staude, E., Kedem, O.: Role of the membrane surface in concentration polarization at ion-exchange membrane. Desalination 69, 101–114 (1988)

    Article  Google Scholar 

  6. Rubinstein, I., Zaltzman, B., Kedem, O.: Electric fields in and around ion-exchange membranes. J. Membr. Sci. 125, 17–21 (1997)

    Article  Google Scholar 

  7. Sistat, P., Pourelly, G.: Chronopotentiometric response of an ion exchange membrane in the underlimiting current range. Transport phenomena within the diffusion layers. J. Membr. Sci. 123, 121–131 (1997)

    Article  Google Scholar 

  8. Rösler, H.W., Maletzki, F., Staude, E.: Ion transfer across electrodialysis membranes in the overlimiting current-range. Chronopotentiometric studies. J. Membr. Sci. 72, 171–179 (1992)

    Article  Google Scholar 

  9. Krol, J.J., Wessling, M., Strathmann, H.: Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. J. Membr. Sci. 162, 155–164 (1999)

    Article  Google Scholar 

  10. Murhy, W.D., Manzanares, J.A., Mafe, S., Reiss, H.: A numerical study on the equilibrium and nonequilibrium diffuse double layer in electrochemical cells. J. Phys. Chem. 96, 9983–9991 (1992)

    Article  Google Scholar 

  11. Gnusin, N.P., Berezina, N.P., Kononenko, N.A., Dyomina, O.A.: Transport structural parameters to characterize ion exchange membranes. J. Membr. Sci. 243, 301–310 (2004)

    Article  Google Scholar 

  12. Ślęzak, A., Ślęzak, I.H., Ślęzak, K.: Influence of the concentration boundary layers on membrane potential in a single-membrane system. Desalination 184, 113–123 (2005)

    Article  Google Scholar 

  13. Dworecki, K., Ślęzak, A., Wasik, S.: Temporal and spatial structure of the concentration boundary layers in membrane system. Physica A 326, 360–369 (2003)

    Article  ADS  Google Scholar 

  14. Ginzburg, B.Z., Katchalsky, A.: The frictional coefficients of the flows of nonelectrolytes through artificial membranes. J. Gen. Physiol. 47, 403–418 (1963)

    Article  Google Scholar 

  15. Ślęzak, A., Dworecki, K., Ślęzak, I.H., Wasik, S.: Permeability coefficient model equations of the complex: membrane-concentration boundary layers for ternary nonelectrolyte solutions. J. Membr. Sci. 267, 50–57 (2005)

    Article  Google Scholar 

  16. Dworecki, K., Ślęzak, A., Ornal-Wasik, B., Wasik, S.: Effect of hydrodynamic instabilities on solute transport in a membrane system. J. Membr. Sci. 265, 94–100 (2005)

    Article  Google Scholar 

  17. Holtz, R., Finkelstein, A.: The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56, 125–145 (1970)

    Article  Google Scholar 

  18. Fischbarg, J., Li, J., Kuang, K., Echevarria, M., Iserovich, P.: Determination of volume and water permeability of platea cells from measurements of light scattering. Am. J. Physiol. 265, C1412–C1423 (1993)

    Google Scholar 

  19. Cotton, C.U., Reuss, L.: Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium. J. Gen. Physiol. 93, 631–647 (1989)

    Article  Google Scholar 

  20. Pohl, P., Saparov, S.M., Antonenko, Y.N.: The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys. J. 75, 1403–1409 (1998)

    Google Scholar 

  21. Lerche, D.: Temporal and local concentration changes in diffusion layers at cellulose membranes due to concentration difference between the solutions on both sides of the membrane. J. Membr. Biol. 27, 193–205 (1976)

    Article  Google Scholar 

  22. Fernandez-Sempere, J., Ruiz-Bevia, F., Salcedo-Diaz, R.: Measurements by holographic interferometry of concentration profiles in dead-end ultrafiltration of polyethylene glycol solutions. J. Membr. Sci. 229, 187–197 (2004)

    Article  Google Scholar 

  23. Ślęzak, A., Dworecki, K., Anderson, J.E.: Gravitational effects on transmembrane flux: the Rayleigh–Taylor convective instability. J. Membr. Sci. 23, 71–81 (1985)

    Article  Google Scholar 

  24. Pedley, T.J.: Calculation of unstirred layers thickness in membrane transport experiments: a survey. Q. Rev. Biophys. 16, 115–150 (1983)

    Article  Google Scholar 

  25. McLaughin, S.G.A., Dilger, J.P.: Transport of protons across membranes by weak acids. Physiol. Rev. 60, 825–863 (1980)

    Google Scholar 

  26. Winne, D.: Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim. Biophys. Acta 298, 27–31 (1973)

    Article  Google Scholar 

  27. Lewitt, M.D., Strocchi, A., Lewitt, D.G.: Human jejunum unstirred layer: evidence for extremely efficient luminal stirring. Am. J. Physiol. 262, 593–595 (1992)

    Google Scholar 

  28. Pappenheimer, J.R.: Role of pre-epitheial “unstirred” layers in a absorption of nutrients from the human jejunum. J. Membr. Biol. 179, 185–204 (2001)

    Article  Google Scholar 

  29. Schatz, A., Linke-Hommes, A.: Gravity and the membrane-solution interface: theoretical investigations. Adv. Space Res. 9, 61–64 (1989)

    Article  ADS  Google Scholar 

  30. Kondepudi, D.K., Prigogine, I.: Sensitivity of non-equilibrium chemical systems to gravitational field. Adv. Space Res. 3, 171–176 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Bryll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ślęzak, A., Bryll, A. & Grzegorczyn, S. A Numerical Study of the Hydrodynamic Stable Concentration Boundary Layers in a Membrane System Under Microgravitational Conditions. J Biol Phys 32, 553–562 (2006). https://doi.org/10.1007/s10867-007-9037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-007-9037-0

Keywords

Navigation