Skip to main content
Log in

Temporal and local concentration changes in diffusion layers at cellulose membranes due to concentration differences between the solutions on both sides of the membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

By means of a laser-interferometrical method diffusion layers at the interface of a noncharged cellulose membrane are studied. These layers are induced by a concentration difference between the NaCl solutions separated by the membrane. The temporal and local shift of the NaCl concentration in the diffusion layers were measured. A steady-state concentration profile could be obtained for times of 121 sec≦t 0≦484 sec. The concentration profiles at any time (t 0≦900) are not a linear function of the membrane surface, but could be fitted to a quadratic function. The thickness of the diffusion layers is also a function of time and its stationary value in this system is (575±49)×10−6 m. The role of concentration polarization for the determination of phenomenological thermodynamic coefficients of membranes is discussed and a new method is suggested, which excludes the difficulties of the concentration polarization in the diffusion layers at the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, P.H., Hope, A.B. 1969a. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. I. Theory.Biophys. J. 9:700

    PubMed  Google Scholar 

  • Barry, P.H., Hope, A.B. 1969b. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. II. Experimental.Biophys. J. 9:279

    Google Scholar 

  • Borisova, M.P., Ermishkin, L.N., Liberman, E.A., Silberstein, A.Y., Trofimov, E.M. 1974. Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole.J. Membrane Biol. 18:243

    Google Scholar 

  • Bressler, E.H., Wendt, R.P., Mason, E.A. 1971. Steady-state sieving across membranes.Science 172:858

    PubMed  Google Scholar 

  • Bruner, L., Tolloczko, St. 1900. Über die Auflösegeschwindigkeit fester Körper.Z. Phys. Chem. 35:283

    Google Scholar 

  • Brunner, E. 1904. Reaktionsgeschwindigkeit in heterogenen Systemen.Z. Phys. Chem. 47:56

    Google Scholar 

  • Correns, E., Purz, H. J., Schwarz, H. H., Hagen, I. 1971. Verfahren zur Herstellung von Membranen und Flächengebilden aus Bakteriencellulose. GDR-patent, co 8b/157624, Sept. 2, 1971.

  • Dainty, J. 1963a. Water relations of plant cells.Adv. Bot. Res. 1:279

    Google Scholar 

  • Dainty, J. 1963b. The polar permeability of plant cell membranes to water.Protoplasma 57:220

    Google Scholar 

  • Dainty, J., House, C.R. 1966. “Unstirred layers” in frog skin.J. Physiol. (Lond.) 182:66

    Google Scholar 

  • Dewhurst, D.J. 1960. Concentration polarization in plane membrane-solution systems.Trans. Faraday Soc. 56:599

    Google Scholar 

  • Everitt, C.T., Haydon, D.A. 1969. Influence of diffusion during osmotic flow across bimolecular lipid membranes.J. Theoret. Biol. 22:9

    Google Scholar 

  • Gingras, G., Samson, J.P. 1970. The Haxo and Blinks electrode — a mathematical model.Biophys. J. 10:1189

    PubMed  Google Scholar 

  • Gitelson, I.I., Fish, A.M. 1969. O “konzentrazionnych jamach” w raspredelenii westschestw w okolokletotschnom prostranstwe.Dokl. Akad. Nauk. SSSR 184:713

    Google Scholar 

  • Green, K., Otori, T. 1970. Direct measurements of membrane unstirred layers.J. Physiol. (Lond.) 207:93

    Google Scholar 

  • Grigoryev, P.A., Ermishkin, L.N. 1970. Unstationary voltage current characteristics with negative resistance on artificial membranes.Biofizika 15:1129

    PubMed  Google Scholar 

  • Ibl, N. 1962. Applications of mass transfer theory: The formation of powdered metal deposits.In: Advances in electrochemistry and electrochemical engineering. C.W. Tobias, editor. p. 49. Interscience Publishers, New York, London

    Google Scholar 

  • Kruis, A. 1936. Die Äquivalenzdispersion von starken Elektrolyten in Lösungen.Z. Phys. Chem. 34b:13

    Google Scholar 

  • Lerche, D. 1974. Untersuchungen zum zeitlichen Verhalten des Konzentrationsprofils in Diffusionsschichten an Membranen. Ph. D. Dissertation, Humboldt-Universität, Berlin

    Google Scholar 

  • Lerche, D. 1975. Quantitative characterisation of current-induced diffusion layers at cation exchange membranes.J. Bioelectrochem. Bioenerget 2:304

    Google Scholar 

  • Lerche, D. Becker, R., Falk, M., Fürst, W. 1976. Arzneimittelpermeation durch künstliche Lipoidmembranen. 6. Mitteilung: Untersuchungen zum Auftreten von Diffusionsschichten in Abhängigkeit von der Membranzusammensetzung und den permeierenden Arzneimitteln.Die Pharmazie 2:304

    Google Scholar 

  • Lerche, D., Kott, M. 1973. Der direkte Nachweis strominduzierter Diffusionsschichten an Epithelgeweben mit Hilfe der Laserinterferometrie.Stud. Biophys. 38:73

    Google Scholar 

  • Lerche, D., Wolf, H. 1971. Laserinterferometrische Bestimmung der Diffusionsschicht an Ionenaustauschmembranen.Stud. Biophys. 27:189

    Google Scholar 

  • Lerche, D., Wolf, H. 1974. Direkte quantitative Bestimmung des Konzentrationsverlaufs in Diffusionsschichten an Membranen mit Hilfe der Laserinterferometrie.Z. Phys. Chem. 255:126

    Google Scholar 

  • Levich, V.G. 1952. Fiziko-chimitscheskaja gidrodinamika. Izdatelstwo Akad. Nauk SSSR, Moskwa

    Google Scholar 

  • Liberman, E.A., Topaly, V.R., Silberstein, A.Y., Oklobistin, O.Yu. 1971. Mobile carriers and negative membrane resistance. I. Uncouplers of oxidative phosphorylation-proton carriers.Biofizika 16:615

    PubMed  Google Scholar 

  • Markin, V.S., Grigoryev, P.A., Ermishkin, L.N. 1971. Direct passage of ions through lipid membranes. I. Mathematical model.Biofizika 16:1011

    PubMed  Google Scholar 

  • Miller, D.M. 1972. The effect of unstirred layers on the measurement of transport rates in individual cells.Biochim. Biophys. Acta 266:85

    PubMed  Google Scholar 

  • Nernst, W. 1904. Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen.Z. Phys. Chem. 47:52

    Google Scholar 

  • Schlögl, R. 1971. Selektiver Transport durch biologische und künstliche Membranen.Umschau 71:470

    Google Scholar 

  • Sonin, A.A., Grossman, G. 1972. Ion transport through layered ion exchange membranes.J. Phys. Chem. 76:3996

    Google Scholar 

  • Stehle, R.G., Higuchi, W.I. 1972. In vitro model for transport of solutes in three-phase system. II. Experimental considerations.J. Pharm. Sci. 61:1922

    PubMed  Google Scholar 

  • van Os, C.M., Slegers, J.F.G. 1973. Path of osmotic water flow through rabbit gall bladder epithelium.Biochim. Biophys. Acta. 291:197

    PubMed  Google Scholar 

  • Vetter, K.J. 1961. Elektrochemische Kinetik. Springer-Verlag, Berlin-Göttingen-Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerche, D. Temporal and local concentration changes in diffusion layers at cellulose membranes due to concentration differences between the solutions on both sides of the membrane. J. Membrain Biol. 27, 193–205 (1976). https://doi.org/10.1007/BF01869136

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869136

Keywords

Navigation