Skip to main content
Log in

Novel Polymorphism of RecA Fibrils Revealed by Atomic Force Microscopy

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

RecA fibrils in physiological conditions have been successfully imaged using Tapping Mode atomic force microscopy. This represents the first time images of recA have been obtained without drying, freezing and/or exposure to high vacuum conditions. While previously observed structures – the monomer, the hexamer, the short rod – were seen, a new type of fibril was also observed. This protofibril is narrower in diameter than the standard fibril, and occurs in three distinct morphologies: aperiodic, 100-nm periodic, and 150-nm periodic. In addition, much longer rods were observed, and appear curved and even circular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roca, A.I. and Cox, M.M.: RecA Protein: Structure, Function, and Role in Recombinational DNA Repair, Prog. Nucleic Acid Res. Mol. Biol. 56 (1997), 129–223.

    Article  Google Scholar 

  2. Kodadek, T.: Mechanistic Parallels Between DNA Replication, Recombination and Transcription, Trends Biochem. Sci. 23 (1998), 79–83.

    Article  Google Scholar 

  3. Ogawa, T., et al.: Similarity of the yeast RAD51 Filament to the Bacterial RecA Filament, Science 259 (1993), 1896–1899.

    Google Scholar 

  4. Rashid, N., Morikawa, M. and Imanaka, T.: A RecA/RAD51 Homologue from a Hyperthermophilic Archaeon Retains the Major RecA Domain Only, Mol. Gen. Genet. 253 (1996) 397–400.

    Article  Google Scholar 

  5. Levin-Zaidman, S., et al.: Ordered Intracellular RecA-DNA Assemblies: A Potential Site of in Vivo RecA-mediated Activities, Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 6791–6796.

  6. Story, R.M., Weber, I.T. and Steitz, T.A.: The Structure of the E. coli RecA Protein Monomer and Polymer [Published Erratum appears in Nature 1992 Feb 6;355(6360):567] [see comments], Nature 355 (1992), 318–325.

    Google Scholar 

  7. Brenner, S.L., Zlotnick, A. and Griffith, J.D.: RecA Protein Self-Assembly. Multiple Discrete Aggregation States, J. Mol. Biol. 204 (1988), 959–972.

    Article  Google Scholar 

  8. Egelman, E.H. and Stasiak, A.: Structure of Helical RecA-DNA Complexes. Complexes Formed in the Presence of ATP-Gamma-S or ATP, J. Mol. Biol. 191 (1986), 677–697.

    Article  Google Scholar 

  9. Logan, K.M., et al.: Mutant RecA Proteins which form Hexamer-Sized Oligomers, J. Mol. Biol. 266 (1997), 306–316.

    Google Scholar 

  10. Neuendorf, S.K. and Cox, M.M.: Exchange of RecA Protein Between Adjacent RecA Protein-Single-Stranded DNA Complexes, J. Biol. Chem. 261 (1986), 8276–8282.

    Google Scholar 

  11. Williams, R.C. and Spengler, S.J.: Fibers of RecA Protein and Complexes of RecA Protein and Single-Stranded Phi X174 DNA as Visualized by Negative-Stain Electron Microscopy, J. Mol. Biol. 187 (1986), 109–118.

    Article  Google Scholar 

  12. Yu, X., et al.: Structural Polymorphism of the RecA Potein from the Thermophilic Bacterium Thermus Aquaticus, Biophys. J. 69 (1995), 2728–2738.

    Google Scholar 

  13. Amrein, M., et al.: Scanning Tunneling Microscopy of RecA-DNA Complexes Coated with a Conducting Film, Science 240 (1988), 514–516.

    Google Scholar 

  14. Amrein, M., et al.: Scanning Tunneling Microscopy of Uncoated RecA-DNA Complexes, Science 243 (1989), 1708–1711.

    Google Scholar 

  15. Morrical, S.W. and Cox, M.M.: Light Scattering Studies of the RecA Protein of Escherichia Coli: Relationship Between Free RecA Filaments and the RecA X ssDNA Complex, Biochemistry 24 (1985), 760–767.

    Article  Google Scholar 

  16. Ellouze, C., et al.: Evidence for Elongation of the Helical Pitch of the RecA Filament upon ATP and ADP Binding using Small-angle Neutron Scattering, Eur. J. Biochem. 233 (1995), 579–583.

    Google Scholar 

  17. Wilson, D.H. and Benight, A.S.: Kinetic Analysis of the Pre-equilibrium Steps in the Self-assembly of RecA Protein from Escherichia Coli, J. Biol. Chem. 265 (1990), 7351–7359.

    Google Scholar 

  18. Wittung, P., Norden, B. and Takahashi, M.: Secondary Structure of RecA in Solution. The Effects of Cofactor, DNA and Ionic Conditions, Eur. J. Biochem. 228 (1995), 149–154.

    Article  Google Scholar 

  19. Heuser, J. and Griffith, J.: Visualization of RecA Protein and its Complexes with DNA by Quick-freeze/deep-etch Electron Microscopy, J. Mol. Biol. 210 (1989), 473–484.

    Article  Google Scholar 

  20. Ruigrok, R.W., et al.: The Inactive form of RecA Protein: The ‘Compact’ Structure, EMBO J, 12 (1993), 9–16.

  21. Ruigrok, R.W.H. and Dicapua, E.: On the Polymerization State of Reca in the Absence of DNA, Biochimie 73 (1991), 191–197.

    Article  Google Scholar 

  22. Timmins, P.A., Ruigrok, R.W.H. and Dicapua, E.: The Solution Structure of RecA Filaments by Small-Angle Neutron-Scattering, Biochimie 73 (1991), 227–230.

    Article  Google Scholar 

  23. Budzynski, D.M., Gao, X.H. and Benight, A.S.: Isolation, Characterization, and Magnesium-induced Self-association Kinetics of Discrete Aggregates of RecA Protein from Escherichia Coli, Biopolymers 38 (1996), 471–491.

    Article  Google Scholar 

  24. Muller, D.J., et al.: Structural Changes in Native Membrane Proteins Monitored at Subnanometer Resolution with the Atomic Force Microscope: A Review, J. Struct. Biol. 119 (1997), 149–157.

    Google Scholar 

  25. Muller, D.J., et al.: Observing Structure, Function and Assembly of Single Proteins by AFM, Prog. Biophys. Mol. Biol. 79 (2002), 1–43.

    Google Scholar 

  26. Mou, J.X., et al.: High Resolution Surface Structure of E-coli GroES Oligomer by Atomic Force Microscopy, FEBS Lett. 381 (1996), 161–164.

    Article  Google Scholar 

  27. Han, W.H., et al.: Kinked DNA, Nature 386 (1997), 563–563.

    Article  ADS  Google Scholar 

  28. Vesenka, J., Miller, R. and Henderson, E.: 3-Dimensional Probe Reconstruction for Atomic-force Microscopy, Rev. Sci. Instrum. 65 (1994), 2249–2251.

    Article  ADS  Google Scholar 

  29. Kuhle, A., et al.: Contrast Artifacts in Tapping Tip Atomic Force Microscopy, Appl. Phys. a-Mater, 66 (1998), S329–S332.

    Article  ADS  Google Scholar 

  30. Roca, A.I. and Cox, M.M.: The RecA Protein: Structure and Function, Crit. Rev. Biochem. Mol. Biol. 25 (1990), 415–456.

    Article  Google Scholar 

  31. Pollanen, M.S., et al.: Twisted Ribbon Structure of Paired Helical Filaments Revealed by Atomic-Force Microscopy, Am. J. Pathol. 144 (1994), 869–873.

    Google Scholar 

  32. Sattin, B.D. and Goh, M.C.: Direct Observation of the Assembly of RecA/DNA Complexes by Atomic Force Microscopy, Biophys. J. 87 (2004), 3430–3436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cynthia Goh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattin, B.D., Goh, M.C. Novel Polymorphism of RecA Fibrils Revealed by Atomic Force Microscopy. J Biol Phys 32, 153–168 (2006). https://doi.org/10.1007/s10867-006-9010-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9010-3

Key words

Navigation