Skip to main content
Log in

Comparison of Efficency of Translation Between a Deformable Swimmer Versus a Rigid Body in a Bounded Fluid Domain: Consequences for Subcellular Transport

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In this paper, we compare the translation efficiencies of a deformable circle that swims by means of low amplitude periodic tangential surface waves versus a rigid circle, moving in a bounded fluid domain. The swimmer is found to be much more efficient than the rigid body. We believe that this result gives some support to the active hypothesis of subcellular transport, where it is supposed that the organelle can generate by itself a propulsive flux, (by changes of form or metabolic activities) instead of just being carried by the motion of an external agent, like a molecular motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beretier-Hahn, J.: Behavior of Mitochondria in the Living Cell, Intl. Rev. Cytol. 122 (1990), 1–63.

    Article  Google Scholar 

  2. Bereiter-Hahn J.: Intracellular Motility of Mitochondria: Role of the Inner Compartment in Migration and Shape Changes of Mitochondria in XTH-Cells, J. Cell Sci. 30 (1978), 99–115.

    Google Scholar 

  3. Nakata, T. et al.: Visualization of the Dynamics of Synaptic Vesicle Plasma Membrane Proteins in Living Axons, J. Cell. Biol. 140 (1998), 659–674.

    Article  Google Scholar 

  4. Alberts, B. et al.: Molecular Biology of the Cell. Garland Pub. Inc., NY & London, 1994.

    Google Scholar 

  5. Verhey, K.J.: Motors and Membrane Trafficking. In: Schliwa, M. (ed.), Molecular Motors, Wiley-Vch., Germany, (2003), pp. 377–410.

    Google Scholar 

  6. Magnasco, M.O.: Forced Thermal Ratchets, Phys. Rev. Lett. 71 (1993), 1477–81.

    Article  ADS  Google Scholar 

  7. Giardini, P.A. et al.: Compression Forces Generated by Actin Comet Tails on Lipid Vesicles. Proc. Natl. Acad. Sci. USA. 100 (2003), 6493–98.

    Article  ADS  Google Scholar 

  8. Blake, J. R.: Self Propulsion Due to Oscillations on the Surface of a Cylinder at Low Reynolds Number. Bull. Austral. Math. Soc. 3 (1971), 255–264.

    Article  ADS  Google Scholar 

  9. Blake, J. R.: Infinite Models for Ciliary Propulsion. J. Fluid Mech. 49 (1971), 209–218.

    Article  MATH  ADS  Google Scholar 

  10. Shapere, A. and Wilczek, F.: Geometry of Self-Propulsion at Low Reynolds Number, J. Fluid Mech. 198 (1989), 557–585.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Alexander Chapman, et al.: Low Reynolds Number Swimming in Two Dimensions. In: Joaquín Delgado (ed.), III International Symposium on Hamiltonian Systems and Celestial Mechanics, Pátzcuaro, Michoacán, México, World Scientific, Singapore, 2000, pp. 32–62.

  12. Taylor, G. I.: Analysis of the Swimming of Microscopic Organisms, Proc. R. Soc. London, Ser. A 209 (1951), 447–461.

    MATH  ADS  Google Scholar 

  13. Reynolds, A. J.: J. Fluid Mech. 23 (1965), 241–260.

    Article  ADS  MathSciNet  Google Scholar 

  14. Tuck, E. O.: A Note on the Swimming Problem. J. Fluid Mech. 31 (1968), 305–308.

    Article  ADS  Google Scholar 

  15. Childress, S.: Mechanics of Swimming and Flying, Cambridge University Press, Cambridge, U.K., 1981, Chap. 3.

    MATH  Google Scholar 

  16. Lighthill, J.: On the Aquirming Motion of Nearly Spherical Deformable Bodies Through Liquids at Very Low Reynolds Number. Commun. Pure Appl. Math. 5 (1952), 109–118.

    Article  MATH  MathSciNet  Google Scholar 

  17. Happel, J. and Brenner, H.: Low Reynolds Number Hidrodynamics, Martinus Nijhoff Pub., Dordrecht, Netherlands, 1986.

    Google Scholar 

  18. Koiller, J. and Delgado, J.: On efficiency Calculations for Nonholonomic Locomotion Problems: An Application to Microswimming, Rep. Math. Phys. 42 (1998), 165–83.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Koiller, J. et al.: Problems and Progress in Microswimming, J. Nonlinear Sci. 6 (1996), 507–41.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Milne-Thomson, L.M.: Theoretical Hydrodynamics. Dover, NY, USA, 1996.

    Google Scholar 

  21. Jeffery, G.B.: Plane Stress and Plain Strain in Bipolar Coordinates, Phil. Trans. Roy. Soc. London Ser. A. 221 (1921), 265–93.

    Article  ADS  Google Scholar 

  22. Delgado, J. and González-García José S.: Evaluation of Spherical Shapes Swimming Efficiency at Low Reynolds Number with Application to Some Biological Problems. Physica D. 168–169 (2002), 365–378.

    Article  Google Scholar 

  23. Finn, M.D. and Cox, S.M.: Stokes Flow in a Mixer with Changing Geometry, Journal of Engineering Mathematics. 41 (2001), 75–99.

    Article  MATH  MathSciNet  Google Scholar 

  24. Astumian, D.R. and Bier, M.: Mechanochemical Coupling of the Motion of Molecular Motors to ATP Hydrolysis, Biophys. J. 70 (1996), 637–53.

    Article  ADS  Google Scholar 

  25. Taylor, G.I.: The Action of Weaving Cylindrical Tails in Propelling Microscopic Organisms. Proc. Roy. Soc. Lond. Ser A. 211 (1951), 225–39.

    Article  ADS  Google Scholar 

  26. Vogel, S.: Life in Moving Fluids. Princeton Univ. Press, Princeton, N.J., USA, 1994

    Google Scholar 

  27. González-García José, S.: Evaluación Teórica de la Micronatación Como Mecanismo de movimiento subcelular. Ph.D. thesis. Universidad Nacional Autónoma de México. México, D.F., 2004.

  28. Shapere, A. and Wilczek, F.: Efficiencies of Self-Propulsion at Low Reynolds Number, J. Fluid Mech. 198 (1989), 587–99.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Astumian, D.R. and Derényi, I.: Fluctuation Driven Transport and Models of Molecular Motors and Pumps, Eur. Biophys. J. 27 (1998), 474–89.

    Article  Google Scholar 

  30. Pianka, E.R.: Evolutionary Ecology. Addison-Wesley, NY, USA, 1999.

    Google Scholar 

  31. Avron, J.E., Gat, O. and Kenneth, O.: Optimal Swimming at Low Reynolds Numbers. Phys. Rev. Lett. 93 (2004), 186001.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-García, J.S., Delgado, J. Comparison of Efficency of Translation Between a Deformable Swimmer Versus a Rigid Body in a Bounded Fluid Domain: Consequences for Subcellular Transport. J Biol Phys 32, 97–115 (2006). https://doi.org/10.1007/s10867-006-9003-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9003-2

Keywords

Navigation