Skip to main content
Log in

Silencing of METTL3 suppressed ferroptosis of myocardial cells by m6A modification of SLC7A11 in a YTHDF2 manner

  • Research
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is the main cause of heart failure (HF). N6-methyladenosine (m6A) methylation is associated with the progression of HF. The study aimed to explore whether METTL3 regulates ferroptosis of cardiomyocytes in HF. We evaluated ferroptosis by detecting lactic dehydrogenase (LDH) release, lipid reactive oxygen species (ROS), Fe2+, glutathione (GSH), and malonaldehyde (MDA) levels. M6A methylation was assessed using methylated RNA immunoprecipitation assay. The binding relationship was assessed using RNA immunoprecipitation assays. The mRNA stability was assessed using actinomycin D treatment. The results showed that METTL3 was upregulated in oxygen glucose deprivation/recovery (OGD/R) cells, which knockdown suppressed OGD/R-induced ferroptosis. Moreover, METTL3 could bind to SLC7A11, promoting m6A methylation of SLC7A11. Silencing of SLC7A11 abrogated the suppression of ferroptosis induced by METTL3 knockdown. Additionally, YTHDF2 was the reader that recognized the methylation of SLC7A11, reducing the stability of SLC7A11. The silencing of METTL3 inhibited OGD/R-induced ferroptosis by suppressing the m6A methylation of SLC7A11, which is recognized by YTHDF2. The findings suggested that METTL3-mediated ferroptosis might be a new strategy for MI-induced HF therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, interpretation of the studies and analysis of the data and review of the manuscript. ZT drafted the work and revised it critically for important intellectual content; XH and HM were responsible for the acquisition, analysis, or interpretation of data for the work; ZZ made substantial contributions to the conception or design of the work.

Corresponding author

Correspondence to Zeqi Zheng.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Huang, X., Mei, H. et al. Silencing of METTL3 suppressed ferroptosis of myocardial cells by m6A modification of SLC7A11 in a YTHDF2 manner. J Bioenerg Biomembr 56, 149–157 (2024). https://doi.org/10.1007/s10863-024-10006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-024-10006-1

Keywords

Navigation