Skip to main content

Advertisement

Log in

Purinergic receptors and neglected tropical diseases: why ignore purinergic signaling in the search for new molecular targets?

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Purinergic receptors are widespread in the human organism and are involved in several physiological functions like neurotransmission, nociception, platelet aggregation, etc. In the immune system, they may regulate the expression and release of pro-inflammatory factors as well as the activation and death of several cell types. It is already described the participation of some purinergic receptors in the inflammation and pathological processes, such as a few neglected tropical diseases (NTDs) which affect more than 1 billion people in the world. Although the high social influence those diseases represent endemic countries, most of them do not have an efficient, safe or affordable drug treatment. In that way, this review aims to discuss the current literature involving purinergic receptor and immune response to NTDs pathogens, which may contribute in the search for new therapeutic possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

ATP:

Adenosine Triphosphate

cAMP:

3′-5′-cyclic adenosine monophosphate

COX:

cyclooxygenase

DCs:

dendritic cells

IP3:

inositol triphosphate

MT:

Mycobacterium tuberculosis

NK cells:

natural killer

NLRs:

NOD-like receptors

NO:

nitric oxide

NTDs:

Negleted Tropical Diseases

P2R:

P2 rec1eptors

PAMPs:

pathogen-associated molecular patterns

PRRs:

pattern recognition receptors

RLRs:

RIG-I–like receptors

TcEcto-NTPDases:

ecto-nucleoside thriphosphate diphosphohydrolase

TLRs:

Toll-Like receptors

TM:

transmembrane domains

WHO:

World Health Organization

References

  • Amaral EP, Ribeiro SC, Lanes VR, Almeida FM, de Andrade MR, Bomfim CC (2014) Pulmonary infection with hypervirulent Mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis. PLoS Pathog 10:e1004188. https://doi.org/10.1371/journal.ppat.1004188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barron L, Wynn T (2011) Macrophage activation governs schistosomiasis-induced inflammation and fibrosis. Eur J Immunol 41:2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsoum RS, Esmat G, El-Baz T (2013) Human schistosomiasis: clinical perspective: review. J Adv Res 4:433–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke ML, Jones MK, Gobert GN, Li YS, Ellis MK, Mcmanus DP (2009) Immunopathogenesis of human schistosomiasis. Parasite Immunol 31:163–176

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2012) Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. BioEssays 34:218–225

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2016) P2X ion channel receptors and inflammation. Purinergic Signal 12:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G, Boeynaems J-M (2014) Purinergic signalling and immune cells. Purinergic Signal 10:529–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascabulho CM, Menna-Barreto RFS, Coutinho-Silva R, Persechini PM, Henriques-Pons A (2008) P2X7 modulatory web in Trypanosoma cruzi infection. Parasitol Res 103:829–838

    Article  CAS  PubMed  Google Scholar 

  • Castro MC, Wilson ME, Bloom DE (2017) Disease and economic burdens of dengue. Lancet Infect Dis 17:e70–e78

    Article  PubMed  Google Scholar 

  • Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16:177–192

    Article  CAS  PubMed  Google Scholar 

  • Chatelain E (2017) Chagas disease research and development: is there light at the end of the tunnel? Comput Struct Biotechnol J 15:98–103

    Article  PubMed  Google Scholar 

  • Chaves SP, Torres-Santos EC, Marques C, Figliuolo VR, Persechini PM, Coutinho-Silva R, Rossi-Bergmann B (2009) Modulation of P2X7 purinergic receptor in macrophages by Leishmania amazonensis and its role in parasite elimination. Microbes Infect 11:842–849

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Marques-da-Silva C, Monteiro APT, Canetti C, Coutinho-Silva R (2014) Leukotriene B4 modulates P2X7 receptor-mediated Leishmania amazonensis elimination in murine macrophages. J Immunol 192:4765–4773

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Canetti C, Coutinho-Silva R (2016) Crosstalk between purinergic receptors and lipid mediators in leishmaniasis. Parasit Vectors 9:489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colley DG, Bustinduy AL, Secor WE, King CH (2014) Human schistosomiasis. Lancet 383:2253–2264

    Article  PubMed  PubMed Central  Google Scholar 

  • Conteh L, Engels T, Molyneux DH (2010) Socioeconomic aspects of neglected tropical diseases. Lancet 375:239–247

    Article  PubMed  Google Scholar 

  • Corrêa G, de A Lindenberg C, Fernandes-Santos C, Gandini M, Petitinga Paiva F, Coutinho-Silva R, Kubelka CF (2016) The purinergic receptor P2X7 role in control of dengue virus-2 infection and cytokine/chemokine production in infected human monocytes. Immunobiology 221:794–802

    Article  CAS  PubMed  Google Scholar 

  • Da’dara AA, Bhardwaj R, Skelly PJ (2014) Schistosome apyrase SmATPDase1, but not SmATPDase2, hydrolyses exogenous ATP and ADP. Purinergic Signal 10:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Figueiredo AB, Souza-Testasicca MC, Afonso LCC (2016) Purinergic signaling and infection by Leishmania: a new approach to evasion of the immune response [figure presented]. Biom J 39:244–250

    Google Scholar 

  • Dubyak GR (2012) P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol 14:1697–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairbairn IP, Stober CB, Kumararatne DS, Lammas DA (2001) ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X(7)-dependent process inducing bacterial death by phagosome-lysosome fusion. J Immunol 167:3300–3307

    Article  CAS  PubMed  Google Scholar 

  • Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Goldberg H, Marks GB et al (2007) A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med 175:360–366. https://doi.org/10.1164/rccm.200607-970OC

    Article  CAS  PubMed  Google Scholar 

  • Figliuolo VR, Chaves SP, Savio LEB, Thorstenberg MLP, Machado Salles É, Takyia CM, D'Império-Lima MR, de Mattos-Guedes HL, Rossi-Bergmann B, Coutinho-Silva R (2017) The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signal 13:143–152

    Article  CAS  PubMed  Google Scholar 

  • Fitz JG (2007) Regulation of cellular ATP release. Trans Am Clin Climatol Assoc 118:199–208

    PubMed  PubMed Central  Google Scholar 

  • Gombault A, Baron L, Couillin I (2012) ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol 3:414

    PubMed  Google Scholar 

  • Gupta G, Oghumu S, Satoskar AR (2014) Mechanisms of immune evasion in Leishmaniasis. Adv Appl Microbiol 82:1–23

    Google Scholar 

  • Hazleton JE, Berman JW, Eugenin E (2012) Purinergic receptors are required for HIV-1 infection of primary human macrophages. J Immunol 188:4488–4495

    Article  CAS  PubMed  Google Scholar 

  • Huber SM (2012) Purinoceptor signaling in malaria-infected erythrocytes. Microbes Infect 14:779–786

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Jayasekara MPS, Costanzi S (2012) Molecular structure of P2Y receptors: mutagenesis, modeling, and chemical probes. Wiley Interdiscip Rev Membr Transp Signal 12:1–19

    Google Scholar 

  • Katzelnick LC, Coloma J, Harris E (2017) Dengue: knowledge gaps, unmet needs, and research priorities. Lancet Infect Dis 17:e88–e100

    Article  PubMed  PubMed Central  Google Scholar 

  • Keiser J, Utzinger J (2009) Food-borne trematodiases. Clin Microbiol Rev 22:466–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    Article  CAS  PubMed  Google Scholar 

  • Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7:433–444

    Article  CAS  PubMed  Google Scholar 

  • Levano-Garcia J, Dluzewski AR, Markus RP, Garcia CRS (2010) Purinergic signalling is involved in the malaria parasite Plasmodium falciparum invasion to red blood cells. Purinergic Signal 6:365–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loría-Cervera EN, Andrade-Narváez FJ (2014) Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo 56:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean L, Chisi JE, Odiit M, Gibson WC, Ferris V, Picozzi K, Sternberg JM (2004) Severity of human african trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infect Immun 72:7040–7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantuano-Barradas M, Henriques-Pons A, Araújo-Jorge TC, Di Virgilio F, Coutinho-Silva R, Persechini PM (2003) Extracellular ATP induces cell death in CD4+/CD8+ double-positive thymocytes in mice infected with Trypanosoma cruzi. Microbes Infect 5:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Marques-da-Silva C, Chaves MM, Rodrigues JC, Corte-Real S, Coutinho-Silva R, Persechini PM (2011a) Differential modulation of ATP-induced P2X7-associated permeabilities to cations and anions of macrophages by infection with Leishmania amazonensis. PLoS One 6:e25356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques-da-Silva C, Chaves MM, Chaves SP, Figliuolo VR, Meyer-Fernandes JR, Lameu C, Corte-Real S, Ulrich H, Ojcius DM, Rossi-Bergmann B, Coutinho-Silva R (2011b) Infection with Leishmania amazonensis upregulates purinergic receptor expression and induces host-cell susceptibility to UTP-mediated apoptosis. Cell Microbiol 13:1410–1428

    Article  CAS  PubMed  Google Scholar 

  • Mascarini-Serra L (2011) Prevention of soil-transmitted helminth infection. J Global Infect Dis 3:175–182

    Article  Google Scholar 

  • Meuser-Batista M, Corrêa JR, Carvalho VF, de Carvalho BCFDP, da Cruz MO, Batista MM, Filho FAF, Silva PMR, Soares MJ, Lannes-Vieira J, Coutinho-Solva R, Henrique-Pons A (2011) Mast cell function and death in Trypanosoma cruzi infection. Am J Pathol 179:1894–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CM, Boulter NR, Fuller SJ, Zakrzewski AM, Lees MP, Saunders BM, Wiley JS, Smith NC (2011) The role of the P2X7 receptor in infectious diseases. PLoS Pathog 7:e1002212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery SP, Starr MC, Cantey PT, Edwards MS, Meymandi SK (2014) Neglected parasitic infections in the United States: Chagas disease. Am J Trop Med Hyg 90:814–818

    Article  PubMed  PubMed Central  Google Scholar 

  • Muniz VS, Baptista-Dos-reis R, Benjamim CF, Mata-Santos HA, Pyrrho AS, Strauch MA, Melo PA, Vicentino ARR, Silva-Paiva J, Bandeira-Melo C, Weller PF, Figueiredo RT, Neves JS (2015) Purinergic P2Y12 receptor activation in eosinophils and the schistosomal host response. PLoS One 10:1–21

    Google Scholar 

  • Mutapi F, Maizels R, Fenwick A, Woolhouse M (2017) Human schistosomiasis in the post mass drug administration era. Lancet Infect Dis 17:e42–e48

    Article  PubMed  Google Scholar 

  • Oliveira SDDS, Coutinho-Silva R, Silva CLM (2013) Endothelial P2X7 receptors’ expression is reduced by schistosomiasis. Purinergic Signal 9:81–89

    Article  CAS  PubMed  Google Scholar 

  • Oliveira SDS, Nanini HF, Savio LEB, Waghabi MC, Silva CLM, Coutinho-Silva R (2014) Macrophage P2X7 receptor function is reduced during schistosomiasis: putative role of TGF-β1. Mediat Inflamm 2014:134974

    Google Scholar 

  • Oliveira SDS, Oliveira NF, Meyer-Fernandes JR, Savio LEB, Ornelas FGI, Ferreira ZS, Coutinho-Silva R, Silva CLM (2016) Increased expression of NTPDases 2 and 3 in mesenteric endothelial cells during schistosomiasis favors leukocyte adhesion through P2Y1 receptors. Vasc Pharmacol 82:66–72

    Article  CAS  Google Scholar 

  • Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Sáez JC (2011) ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 118:826–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco PA, Faria RX, Ferreira LG, Paixão IC (2014) Putative roles of purinergic signaling in human immunodeficiency virus-1 infection. Biol Direct 9:21–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Molina JA, Molina I (2017) Chagas disease. Lancet 6736:1–13

    Google Scholar 

  • Pérez-Molina JA, Perez AM, Norman FF, Monge-Maillo B, López-Vélez R (2015) Old and new challenges in Chagas disease. Lancet Infect Dis 15:1347–1356

    Article  PubMed  Google Scholar 

  • Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203

    CAS  PubMed  Google Scholar 

  • Placido R, Auricchio G, Falzoni S, Battistini L, Colizzi V, Brunetti E, Di Virgilio F, Mancino G (2006) P2X(7) purinergic receptors and extracellular ATP mediate apoptosis of human monocytes/macrophages infected with Mycobacterium tuberculosis reducing the intracellular bacterial viability. Cell Immunol 244:10–18

    Article  CAS  PubMed  Google Scholar 

  • Santos AA Jr, Rodrigues-Junior V, Zanin RF, Borges TJ, Bonorino C, Coutinho-Silva R, Takyia CM, Santos DS, Campos MM, Morrone FB (2013a) Implication of purinergic P2X7 receptor in M. tuberculosis infection and host interaction mechanisms: a mouse model study. Immunobiology 218:1104–1112

    Article  CAS  PubMed  Google Scholar 

  • Santos AA Jr, Rodrigues-Junior V, Zanin RF, Borges TJ, Bonorino C, Coutinho-Silva R (2013b) Implication of purinergic P2X7 receptor in M. tuberculosis infection and host interaction mechanisms: a mouse model study. Immunobiology 218:1104–1112. https://doi.org/10.1016/j.imbio.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  • Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  CAS  PubMed  Google Scholar 

  • Séror C, Melki M, Subra F, Raza SQ, Bras M, Saïdi H, Nardacci R, Voisin L, Paoletti A, Law F, Martins I, Amendola A, Abdul-Sater AA, Ciccosanti F, Delelis O, Niedergang F, Thierry S, Said-Sadier N, Lamaze C, Métivier D, Estaquier J, Fimia GM, Falasca L, Casetti R, Modjtahedi N, Kanellopoulos J, Mouscadet J, Ojcius DM, Piacentini M, Gougeon M, Kroemer G (2011) Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. J Exp Med 208:1823–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra B, Perez AB, Vogt K, Garcia G, Schmolke K, Aguirre E, Alvarez M, Kern F, Kourí G, Volk H, Guzman MG (2010) Secondary heterologous dengue infection risk: disequilibrium between immune regulation and inflammation? Cell Immunol 262:134–140

    Article  CAS  PubMed  Google Scholar 

  • Singla N, Gupta D, Joshi A, Batra N, Singh J (2012) Genetic polymorphisms in the P2X7 gene and its association with susceptibility to tuberculosis. Int J Tuberc Lung Dis 16:224–229

    Article  CAS  PubMed  Google Scholar 

  • Souza VL, Veras PS, Welby-Borges M, Silva TM, Leite BR, Ferraro RB, Meyer-Fernandes JR, Barral A, Costa JM, de Freitas LA (2011) Immune and inflammatory responses to Leishmania amazonensis isolated from different clinical forms of human leishmaniasis in CBA mice. Mem Inst Oswaldo Cruz 106:23–31

    Article  PubMed  Google Scholar 

  • Stockdale L, Newton R (2013) A review of preventative methods against human leishmaniasis infection. PLoS Negl Trop Dis 7:e2278

    Article  PubMed  PubMed Central  Google Scholar 

  • Swartz TH, Dubyak GR, Chen BK (2015) Purinergic receptors: key mediators of HIV-1 infection and inflammation. Front Immunol 6

  • Talvani A, Teixeira MM (2011) Inflammation and Chagas disease some mechanisms and relevance. Adv Parasitol 76:171–194

    Article  PubMed  Google Scholar 

  • Tam CC, Khan MS, Legido-Quigley H (2016) Where economics and epidemics collide: migrant workers and emerging infections. Lancet 388:1374–1376

    Article  PubMed  Google Scholar 

  • Tanneur V, Duranton C, Brand VB, Sandu CD, Akkaya C, Kasinathan RS, Gachet C, Sluyter R, Barden JA, Wiley JS, Lang F, Huber SM (2006) Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB J 20:133–135

    Article  CAS  PubMed  Google Scholar 

  • Tsai C-Y, Liong KH, Gunalan MG, Li N, Lim DSL, Fisher DA, MacAry PA, Leo YS, Wong S, Puan KJ, Wong SBJ (2015) Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with dengue virus. J Immunol 194:3890–3900

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li J, Pu H, Hasan B, Ma J, Jones MK, Zheng K, Zhang X, Ma H, McManus DP, Lin R, Wen H (2014) Echinococcus granulosus infection reduces airway inflammation of mice likely through enhancing IL-10 and down-regulation of IL-5 and IL-17A. Parasit Vectors 7:522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehorn J, Van VCN, Simmons CP (2014) Dengue human infection models supporting drug development. J Infect Dis 209(Suppl):S66–S70

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2012) Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis. World Health Organ Tech Rep Ser: v–xii, 1-100. Available: https://www.ncbi.nlm.nih.gov/pubmed/23484340

  • Yim J-J, Selvaraj P (2010) Genetic susceptibility in tuberculosis. Respirology 15:241–256

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PAFP – wrote P2R section and P2Rs and diseases, LPD – wrote P2R section and P2Rs and diseases, LGBF – wrote P2R section and P2Rs and diseases, RXF – planned and reviewed P2R section and P2Rs and diseases. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Robson Xavier Faria.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, P.A.F., Dantas, L.P., Ferreira, L.G.B. et al. Purinergic receptors and neglected tropical diseases: why ignore purinergic signaling in the search for new molecular targets?. J Bioenerg Biomembr 50, 307–313 (2018). https://doi.org/10.1007/s10863-018-9761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-018-9761-0

Keywords

Navigation