Skip to main content

Advertisement

Log in

Mitochondrial energy metabolism and signalling in human glioblastoma cell lines with different PTEN gene status

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Glioblastomas epidemiology and aggressiveness demand for a well characterization of biochemical mechanisms of the cells. The discovery of oxidative tumours related to chemoresistance is changing the prevalent view of dysfunctional mitochondria in cancer cells. Thus, glioblastomas metabolism is now an area of intense research, wherein was documented a high heterogeneity in energy metabolism and in particular in mitochondrial OxPhos. We report results gained by investigating mitochondrial OxPhos and bioenergetics, in a model of three human glioblastoma cell lines characterized by a different PTEN gene status. Functional data are analysed in relation to the expression levels of some main transcription factors and signalling proteins, which can be involved in the regulation of mitochondrial biogenesis and activity. Collectively, our observations indicate for the three cell lines a similar bioenergetic phenotype maintaining a certain degree of mitochondrial oxidative activity, with some difference for PTEN-wild type SF767 cells respect to PTEN-deleted A172 and U87MG characterized by a loss-of-function point mutation of PTEN. SF767 has lower ATP content and higher ADP/ATP ratio, higher AMPK activating-phosphorylation evoking energy impairment, higher OxPhos complexes and PGC1α-Sirt3-p53 protein abundance, in line with a higher respiration. Finally, SF767 shows a similar mitochondrial energy supply, but higher non-phosphorylating respiration linked to dissipation of protonmotive force. Intriguingly, it is now widely accepted that a regulated mitochondrial proton leak attenuate ROS generation and in tumours may be at the base of pro-survival advantage and chemoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADP:

Adenosine 5′-diphosphate

AMPK:

AMP-activated protein kinase

ATP:

Adenosine 5′-trphosphate

CS:

Citrate synthase

2-DG:

2-deoxyglucose

DMEM:

Dulbecco’s modified Eagle’s medium

ECAR:

Extracellular acidification rate

EDTA:

Ethylenediaminetetraacetic acid

ETS:

Electron transport system

FCCP:

Carbonyl cyanide p-trifluoro-methoxyphenyl hydrazine

HSP60:

Heat shock protein 60

LKB1:

Liver kinase B1

MDM2:

Mouse double minute 2

mTOR:

Mammalian target of rapamycin

mTORC1:

Mammalian target of rapamycin complex 1

OCR:

Oxygen consumption rate

OxPhos:

Oxidative phosphorylation

PBS:

Phosphate–buffered saline

PGC1α:

Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha

PS:

Phosphorylating system

PTEN:

Phosphatase and tensin homolog

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecyl sulphate - polyacrylamide gel electrophoresis

Sirt3:

Silent mating-type information regulation 2 homolog sirtuin

SCO2:

Cytochrome c oxidase assembly protein

TCA:

Tricarboxylic acid

TFAM:

Mitochondrial transcription factor A

TIGAR:

TP53-induced glycolysis and apoptosis regulator

TMPD:

Tetramethyl-p-phenylenediamine dihydrochloride

TOM:

Translocase of outer mitochondrial membrane

WHO:

World health organization

References

  • Antico Arciuch VG, Russo MA, Kang KS, Di Cristofano A (2013) Inhibition of AMPK and Krebs cycle gene expression drives metabolic remodeling of Pten-deficient preneoplastic thyroid cells. Cancer Res 73:5459–5472

    Article  CAS  Google Scholar 

  • Austin S, St-Pierre J (2012) PGC1α and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125:4963–4971

    Article  CAS  Google Scholar 

  • Azarias G, Perreten H, Lengacher S, Poburko D, Demaurex N, Magistretti J, Chatton J (2011) Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J Neurosci 31:3550–3559

    Article  CAS  Google Scholar 

  • Azzu V, Brand MD (2010) The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem 35:298–307

    Article  CAS  Google Scholar 

  • Bergeaud M, Mathieu L, Guillaume A, Moll UM, Mignotte B, Le Floch N, Vayssière JL, Rincheval V (2013) Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F1F0-ATP synthase. Cell Cycle 12:2781–2793

    Article  CAS  Google Scholar 

  • Brandt AP, Pires Ado R, Rocha ME, Noleto GR, Acco A, de Souza CE, Echevarria A, Canuto AV, Cadena SM (2014) Sydnone SYD-1 affects the metabolic functions of isolated rat hepatocytes. Chem Biol Interact 218:107–114

    Article  CAS  Google Scholar 

  • Brenmoehl J, Hoeflich A (2013) Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13:755–761

    Article  CAS  Google Scholar 

  • Chautard E, Ouedraogo ZG, Biau J, Verrelle P (2014) Role of Akt in human malignant glioma: from oncogenesis to tumor aggressiveness. J Neuro-Oncol 117:205–215

    Article  CAS  Google Scholar 

  • Chen Y, LL F, Wen X, Wang XY, Liu J, Cheng Y, Huang J (2014) Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis 5:e1047. https://doi.org/10.1038/cddis.2014.14

    Article  CAS  Google Scholar 

  • Cheng J, Nanayakkara G, Shao Y, Cueto R, Wang L, Yang WY, Tian Y, Wang H, Yang X (2017) Mitochondrial proton leak plays a critical role in pathogenesis of cardiovascular diseases. Adv Exp Med Biol 982:359–370

    Article  Google Scholar 

  • Comelli M, Domenis R, Bisetto E, Contin M, Marchini M, Ortolani F, Tomasetig L, Mavelli I (2011) Cardiac differentiation promotes mitochondria development and ameliorates oxidative capacity in H9c2 cardiomyoblasts. Mitochondrion 11:315–326

    Article  CAS  Google Scholar 

  • Cuezva JM, Ortega AD, Willers I, Sánchez-Cenizo L, Aldea M, Sánchez-Aragó M (2009) The tumor suppressor function of mitochondria: translation into the clinics. Biochim Biophys Acta 1792:1145–1158

    Article  CAS  Google Scholar 

  • Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR, Baffy G (2008) The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res 68:2813–2819

    Article  CAS  Google Scholar 

  • Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100:387–390

    Article  Google Scholar 

  • Endersby R, Baker SJ (2008) PTEN signalling in brain: neuropathology and tumorigenesis. Oncogene 27:5416–5430

    Article  CAS  Google Scholar 

  • Feichtinger RG, Weis S, Johannes AM, Zimmermann F, Geilberger R, Sperl W, Kofler B (2014) Alterations of oxidative phosphorylation complexes in astrocytomas. Glia 62:514–525

    Article  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    Article  CAS  Google Scholar 

  • Galeffi F, Turner DA (2012) Exploiting metabolic differences in glioma therapy. Curr Drug Discov Technol 9:280–293

    Article  CAS  Google Scholar 

  • George J, Ahmad N (2016) Mitochondrial sirtuins in cancer: emerging roles and therapeutic potential. Cancer Res 76:2500–2506

    Article  CAS  Google Scholar 

  • Giralt A, Villarroya F (2012) SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444:1–10

    Article  CAS  Google Scholar 

  • Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. Wiley, Inc, Hoboken, pp 327–352

    Google Scholar 

  • Griguer CE, Oliva CR, Gillespie GYJ (2005) Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J Neuro-Oncol 74:123–133

    Article  CAS  Google Scholar 

  • Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908

    Article  CAS  Google Scholar 

  • Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H (2001) Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 287:562–567

    Article  CAS  Google Scholar 

  • Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479

    Article  CAS  Google Scholar 

  • Kao TY, Chiu YC, Fang WC, Cheng CW, Kuo CY, Juan HF, Wu SH, Lee AY (2015) Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis 6:e1642. https://doi.org/10.1038/cddis.2015.9

    Article  CAS  Google Scholar 

  • Keniry M, Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27:5477–5485

    Article  CAS  Google Scholar 

  • Kim J, Han J, Jang Y, Kim SJ, Lee MJ, Ryu MJ, Kweon GR, Heo JY (2015) High-capacity glycolytic and mitochondrial oxidative metabolisms mediate the growth ability of glioblastoma. Int J Oncol 47:1009–1016

    Article  CAS  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–229

    Article  CAS  Google Scholar 

  • Liu M, Wang J, Qi Q, Huang B, Chen A, Li X, Wang J (2016) Nitidine chloride inhibits the malignant behavior of human glioblastoma cells by targeting the PI3K/AKT/mTOR signaling pathway. Oncol Rep. https://doi.org/10.3892/or.2016.4998

  • Lowry OH, Rosebrough NJ, Lewis RA, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Margareto J, Leis O, Larrarte E, Idoate MA, Carrasco A, Lafuente JV (2007) Gene expression profiling of human gliomas reveals differences between GBM and LGA related to energy metabolism and notch signaling pathways. J Mol Neurosci 32:53–63

    Article  CAS  Google Scholar 

  • Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z, Cai L, Good L, BP T, Hatanpaa KJ, Mickey BE, Matés JM, Pascual JM, Maher EA, Malloy CR, Bachoo RM (2012) Analyses of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 15:827–837

    Article  CAS  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  CAS  Google Scholar 

  • Mesti T, Ocvirk J (2016) Malignant gliomas: old and new systemic treatment approaches. Radiol Oncol 50:129–138

    CAS  Google Scholar 

  • Obre E, Rossignol R (2015) Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol 59:167–181

    Article  CAS  Google Scholar 

  • O'Brien LC, Keeney PM, Bennett JP Jr (2015) Differentiation of human neural stem cells into motor neurons stimulates mitochondrial biogenesis and decreases glycolytic flux. Stem Cells Dev 24:1984–1994

    Article  Google Scholar 

  • Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  CAS  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schüler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lütolf UM, Kleihues P (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    Article  CAS  Google Scholar 

  • Özcan E, Çakır T (2016) Reconstructed metabolic network models predict flux-level metabolic reprogramming in glioblastoma. Front Neurosci 10:156. https://doi.org/10.3389/fnins.2016.00156

    Article  Google Scholar 

  • Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58

    Article  CAS  Google Scholar 

  • Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, Samant S, Ravindra PV, Isbatan A, Gupta MP (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 285:3133–3144

    Article  CAS  Google Scholar 

  • Rodrigues-Silva E, Siqueira-Santos ES, Ruas JS, Ignarro RS, Figueira TR, Rogério F, Castilho RF (2017) Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity. J Neuro-Oncol 133:519–529

    Article  CAS  Google Scholar 

  • Rosso P, Fioramonti M, Fracassi A, Marangoni M, Taglietti V, Siteni S, Segatto M (2016) AMPK in the central nervous system: physiological roles and pathological implications. Res Rep Biol 7:1–13

    Google Scholar 

  • Sánchez-Aragó M, García-Bermúdez J, Martínez-Reyes I, Santacatterina F, Cuezva JM (2013) Degradation of IF1 controls energy metabolism during osteogenic differentiation of stem cells. EMBO Rep 14:638–644

    Article  Google Scholar 

  • Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576:1–14

    Article  CAS  Google Scholar 

  • Shackelford DB (2013) Unravelling the connection between metabolism and tumorigenesis through studies of the liver kinase B1 tumour suppressor. J Carcinog 12:16. https://doi.org/10.4103/1477-3163.116323

    Article  Google Scholar 

  • Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM (2007) LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129:565–577

    Article  CAS  Google Scholar 

  • Shlomi T, Benyamini T, Gottlieb E, Sharan E, Ruppin E (2011) Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput Biol 7(3):e1002018

    Article  CAS  Google Scholar 

  • Strickland M, Stoll EA (2017) Metabolic Reprogramming in Glioma. Front Cell Dev Biol 5(43):1–32

    Google Scholar 

  • Tang H, Li J, Liu X, Wang G, Luo M, Deng H (2016) Down-regulation of HSP60 suppresses the proliferation of glioblastoma cells via the ROS/AMPK/mTOR pathway. Sci Rep 6:28388. https://doi.org/10.1038/srep28388

    Article  CAS  Google Scholar 

  • Vassilev LT, BT V, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  Google Scholar 

  • Wang F, Fu X, Chen X, Chen X, Zhao Y (2010) Mitochondrial uncoupling inhibits p53 mitochondrial translocation in TPA-challenged skin epidermal JB6 cells. PLoS One 5(10):e13459. https://doi.org/10.1371/journal.pone.0013459

    Article  Google Scholar 

  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallmann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008

    Article  CAS  Google Scholar 

  • Xie Z, Dong Y, Zhang M, Cui MZ, Cohen RA, Riek U, Neumann D, Schlattner U, Zou MH (2006) Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem 281:6366–6375

    Article  CAS  Google Scholar 

  • Yeung KY, Dickinson A, Donoghue JF, Polekhina G, White SJ, Grammatopoulos DK, McKenzie M, Johns TG, St John JC (2014) The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathol Commun 2:1. https://doi.org/10.1186/2051-5960-2-1

    Article  Google Scholar 

  • Zhang Y, Zhou L (2012) Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation. Biochem Biophys Res Commun 423:26–31

    Article  CAS  Google Scholar 

  • Zong WX, Rabinowitz JD, White E (2016) Mitochondria and cancer. Mol Cell 61:667–676

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge doctor Pier Giorgio Mastroberardino, Department of Genetics Erasmus Medical Center Rotterdam, for the useful discussion of data, as well as prof. Claudio Brancolini and prof. Gianluca Tell, Department of Medicine, University of Udine for glioblastoma cell lines, and prof. Giovanna Lippe, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, for TOM20 antibody. Additionally, Silvia Lolini and Luca Bazzichetto, Department of Medicine, University of Udine, for technical support.

Author information

Authors and Affiliations

Authors

Contributions

I.M. and M.C. designed research and interpreted results of experiments; M.C. and I.P. maintained cell lines and performed experiments of mitochondria imaging, cell respiration and bioenergetic phenotype; M.C. analysed data, prepared figures and drafted manuscript; I.P. and A.B. performed quantitative WB analyses; A.B. organised “Supplementary Content”; I.M. edited and revised manuscript.

Corresponding author

Correspondence to Marina Comelli.

Electronic supplementary material

ESM 1

(DOCX 1353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comelli, M., Pretis, I., Buso, A. et al. Mitochondrial energy metabolism and signalling in human glioblastoma cell lines with different PTEN gene status. J Bioenerg Biomembr 50, 33–52 (2018). https://doi.org/10.1007/s10863-017-9737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9737-5

Keywords

Navigation