Skip to main content
Log in

Contribution of intracellular negative ion capacity to Donnan effect across the membrane in alkaliphilic Bacillus spp.

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

To elucidate the energy production mechanism of alkaliphiles, the relationship between the H+ extrusion rate by the respiratory chain and the corresponding ATP synthesis rate was determined in the facultative alkaliphile Bacillus cohnii YN-2000 and compared with those in the obligate alkaliphile Bacillus clarkii DSM 8720T and the neutralophile Bacillus subtilis IAM 1026. Under high aeration condition, much higher ATP synthesis rates and larger Δψ in the alkaliphilic Bacillus spp. grown at pH 10 than those in the neutralophilic B. subtilis grown at pH 7 were observed. This high ATP productivity could be attributed to the larger Δψ in alkaliphiles than in B. subtilis because the H+ extrusion rate in alkaliphiles cannot account for the high ATP productivity. However, the large Δψ in the alkaliphiles could not be explained only by the H+ translocation rate in the respiratory chain in alkaliphiles. There is a possibility that the Donnan effect across the membrane has the potential to contribute to the large Δψ. To estimate the contribution of the Donnan effect to the large Δψ in alkaliphilic Bacillus spp. grown at pH 10, intracellular negative ion capacity was examined. The intracellular negative ion capacities in alkaliphiles grown at pH 10 under high aeration condition corresponding to their intracellular pH (pH 8.1) were much higher than those in alkaliphiles grown under low aeration condition. A proportional relationship is revealed between the negative ion capacity and Δψ in alkaliphiles grown under different aeration conditions. This relationship strongly suggests that the intracellular negative ion capacity contributes to the formation of Δψ through the Donnan effect in alkaliphilic Bacillus spp. grown at pH 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aono R, Horikoshi (1983) Chemical composition of cell walls of alkalophilic strains of Bacillus. J Gen Microbiol 129:1083–1087

    CAS  Google Scholar 

  • Aono R, Ito M, Horikoshi K (1997) Measurement of cytoplasmic pH of the alkaliphile Bacillus lentus C-125 with a fluorescent pH probe. Microbiology 143:2531–2536

    Article  CAS  Google Scholar 

  • Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606

    CAS  Google Scholar 

  • Dimroth P, Cook GM (2004) Bacterial Na+- or H+-coupled ATP synthases operating at low electrical potential. Adv Microb Physiol 49:175–218

    Article  CAS  Google Scholar 

  • Donnan FG (1924) The theory of membrane equilibria. Chem Rev 1:73–90

    Article  CAS  Google Scholar 

  • Doukov TI, Hemmi H, Drennan CL, Ragsdale SW (2007) Structural and kinetic evidence for extended hydrogen-bonding network in catalysis of methyl group transfer. Role of an active site asparagine residue in activation of methyl transfer by methyltransferases. J Biol Chem 282:6609–6618

    Article  CAS  Google Scholar 

  • Elston T, Hongyun W, Oster G (1998) Energy transduction in ATP synthase. Nature 391:510–513

    Article  CAS  Google Scholar 

  • Goto T, Matsuno T, Hishinuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I (2005) Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 100:365–379

    Article  CAS  Google Scholar 

  • Helfferich FG (1962) Ion exchange, 1st edn. McGraw-Hill, New York

    Google Scholar 

  • Hicks DB, Krulwich TA (1995) The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta 1229:303–314

    Article  Google Scholar 

  • Hirabayashi T, Goto T, Morimoto H, Yoshimune K, Matsuyama H, Yumoto I (2012) Relationship between rates of respiratory proton extrusion and ATP synthesis in obligately alkaliphilic Bacillus clarkii DSM 8720T. J Bioeng Biomembr 44:265–272

    Article  CAS  Google Scholar 

  • Hisae N, Aizawa K, Koyama N, Sekiguchi T, Nosoh Y (1983) Purification and properties of NADH dehydrogenase from an alkalophilic Bacillus. Biochim Biophys Acta 743:232–238

    Article  CAS  Google Scholar 

  • Hoffman A, Dimroth P (1991) The electrochemical proton potential of Bacillus alcalophilus. Eur J Biochem 201:467–473

    Article  Google Scholar 

  • Horikoshi K (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging studies, and emerging fields of extremophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles Handbook. Springer, Tokyo, p 3

    Chapter  Google Scholar 

  • Ito M, Xu HX, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004) The voltage-gated Na+ NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci U S A 101:10566–10571

    Article  CAS  Google Scholar 

  • Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S, Fackelmayer OJ, Smith T-A, Earl J, Elbourne LDH, Hassan K, Paulsen IT, Kolstø A-B, Tourasse NJ, Ehrlich GD, Boissy R, Ivey DM, Li G, Xue Y, Ma Y, Hu FZ, Krulwich TA (2011) Genome of alkaliphilic Bacillus pseudomonas OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13:3289–3309

    Article  CAS  Google Scholar 

  • Kitada M, Guffanti AA, Krulwich TA (1982) Bioenergetic properties and viability of alkalophilic Bacillus firmus RAB as a function of pH and Na+ contents of the incubation medium. J Bacteriol 152:1096–1104

    CAS  Google Scholar 

  • Kitada M, Kosono S, Kudo T (2000) The Na+ /H+ antiporter of alkaliphilic Bacillus sp. Extremophiles 4:253–258

    Article  CAS  Google Scholar 

  • Krulwich TA (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410

    Article  CAS  Google Scholar 

  • Krulwich TA, Hick DB, Swartz T, Ito M (2007) Bioenergetics adaptation that support alkaliphyliy. In: Gerday C, Glansodorff N (eds) Physiology and Biochemistry of Extremophiles. ASM Press, Washington, pp 311–329

    Chapter  Google Scholar 

  • Lakshminarayanaiah N (1969) Transprot phenomena in membranes, 1st edn. Academic, Philadelphia

    Google Scholar 

  • Liu J, Krulwich TA, Hicks DB (2008) Purification of two putative type II NADH dehydrogenases with different substrate specificities from alkaliphilic Bacillus pseudofirmus OF4. Biochim Biophys Acta 1777:453–461

    Article  CAS  Google Scholar 

  • Matias VRF, Beveridge TJ (2005) Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 56:240–251

    Article  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  Google Scholar 

  • Nielsen P, Rainey FA, Outtrup H, Priest FG, Fritze D (1994) Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett 117:61–66

    Article  CAS  Google Scholar 

  • Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761

    Article  CAS  Google Scholar 

  • Ogami S, Hihikata S, Tsukahara T, Mie Y, Matsuno T, Morita N, Hara I, Yamazaki K, Inoue N, Yokota A, Hoshino T, Yoshimune K, Yumoto I (2009) A novel membrane-anchored cytochrome c-550 of alkaliphilc Bacillus clarkii K24-1U: expression, molecular features and properties of redox potential. Extremophiles 13:491–504

    Article  CAS  Google Scholar 

  • Ohta K, Kiyomiya A, Koyama N, Nosoh Y (1975) The basis of the alkalophilic property of a species of Bacillus. J Gen Microbiol 86:256–266

    Article  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insight. Biochim Biophys Acta 1717:67–88

    Article  CAS  Google Scholar 

  • Shioi J-I, Matsuura S, Imae Y (1980) Quantitative measurements of proton motive force and motility in Bacillus subtilis. J Bacteriol 144:891–897

    CAS  Google Scholar 

  • Sone N, Fujiwara Y (1991) Effects of aeration during growth of Bacillus stearothermophilus; on proton pumping activity and change of terminal oxidases. J Biochem 110:1016–1021

    CAS  Google Scholar 

  • Sone N, Tsukita S, Sakamoto J (1999) Direct correlation between proton translocation and growth yield: an analysis of the respiratory chain of Bacillus stearothermophilus. J Biosci Bioeng 87:495–499

    Article  CAS  Google Scholar 

  • Sturr M, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continues-culture at high pH. J Bacteriol 176:3111–3116

    CAS  Google Scholar 

  • Sugiyama S, Matsukura H, Koyama N, Nosoh Y, Imae Y (1986) Requirement of Na+ in flagellar rotation and amino-acid transport in a facultatively alkalophilic Bacillus. Biochim Biophys Acta 852:38–45

    Article  CAS  Google Scholar 

  • Suzuki H, Wang Z-Y, Yamakoshi M, Kobayashi M, Nozawa T (2003) Probing the transmembrane potential of bacterial cells by voltage-sensitive dye. Anal Sci 19:1239–1242

    Article  CAS  Google Scholar 

  • Terayama H (1962) Surface electric charge of ascites hepatomas and the dissociateion of islands of tumor cells. Exp Cell Res 28:113–119

    Article  CAS  Google Scholar 

  • Tsujii K (2002) Donnan equilibria in microbial cell walls: a pH-homeostatic mechanism in alkaliphiles. Colloids Surf B Biointerfaces 24:247–251

    Article  CAS  Google Scholar 

  • van de Vossenberg JLCM, Driessen AJM, Zilling W, Koning WN (1998) Bioenergetic and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74

    Article  Google Scholar 

  • Xu X, Koyama N, Cui M, Yamagishi A, Nosoh Y, Oshimas T (1991) Nucleotide sequence of the gene encoding NADH dehydrogenase from an alkalophile, Bacillus sp. strain YN-1. J Biochem 109:678–683

    CAS  Google Scholar 

  • Yaginuma A, Tsukida S, Sakamoto J, Sone N (1997) Characterization of two terminal oxidases in Bacillus brevis and efficiency of energy conservation of the respiratory chain. J Biochem 122:969–976

    Article  CAS  Google Scholar 

  • Yoshimune K, Morimoto H, Hirano Y, Sakamoto J, Matsumoto H, Yumoto I (2010) The obligate alkaliphile Bacillus clarkii K24-1U retains extruded protons at the beginning of respiration. J Bioeng Biomembr 42:111–116

    Article  CAS  Google Scholar 

  • Yumoto I (2002) Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93:343–353

    Article  Google Scholar 

  • Yumoto I (2003) Electron transport system in alkaliphilic Bacillus spp. Recent Res Devel Bacteriol 1:131–149

    CAS  Google Scholar 

  • Yumoto I (2007) Environmental and taxonomic biodiversities of Gram-positive alkaliphiles. In: Gerday C, Glansdorff N (eds) Physiology and Biochemistry of Extremophiles. ASM Press, Washington, pp 295–310

    Chapter  Google Scholar 

  • Yumoto I, Takahashi S, Kitagawa T, Fukumori Y, Yamanaka T (1993) The molecular features and catalytic activity of CuA-containing aco 3-type cytochrome c oxidase from facultatively alkalophilic Bacillus. J Biochem 114:88–95

    CAS  Google Scholar 

  • Yumoto I, Nakajima K, Ikeda K (1997) Comparative study on cytochrome content of alkaliphilic Bacillus strains. J Ferment Bioeng 83:466–469

    Article  CAS  Google Scholar 

  • Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Inoue N, Kawasaki K (2000) Identification of facultative alkaliphilic Bacillus sp. YN-2000 and its fatty acid composition and cell-surface aspects depending on culture pH. Extremophiles 4:285–290

    Article  CAS  Google Scholar 

  • Yumoto I, Hirota K, Yoshimune K (2011) Environmental distribution and taxonomic diversity of alkaliphiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles Handbook. Springer, Tokyo, pp 55–79

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Mr. Akira Sugimoto for his technical assistance to determinations of ATP production experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Yumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, T., Hirabayashi, T., Morimoto, H. et al. Contribution of intracellular negative ion capacity to Donnan effect across the membrane in alkaliphilic Bacillus spp.. J Bioenerg Biomembr 48, 87–96 (2016). https://doi.org/10.1007/s10863-015-9641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9641-9

Keywords

Navigation