Skip to main content
Log in

Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex I subunit genes

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH2-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H2O2 formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baptista C, Vêncio R, Abdala S, Carranza J, Westerberger S, Silva M, de B Pereira C, Galvão L, Gontijo E, Chiari E, Sturm N, Zingales B (2006) Mol Biochem Parasitol 150:236–248

    Article  CAS  Google Scholar 

  • Besteiro S, Biran M, Biteau N, Coustou V, Baltz T, Canioni P, Bringaud F (2002) J Biol Chem 277:38001–38012

    Article  CAS  Google Scholar 

  • Boveris A, Hertig C, Turrens J (1986) Mol Biochem Parasitol 19:163–169

    Article  CAS  Google Scholar 

  • Bradford M (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bringaud F, Riviere L, Coustou V (2006) Mol Biochem Parasitol 149:1–9

    Article  CAS  Google Scholar 

  • Campbell DA, Westenberger SJ, Sturm NR (2004) Curr Mol Med 4:549–562

    Article  CAS  Google Scholar 

  • Campos C, Degasperia GR, Pacífico D, Albericia L, Carreira R, Guimarães F, Castilho R, Vercesi A (2004) Biochem Pharmacol 68:2197–2206

    Article  CAS  Google Scholar 

  • Cannata J, Cazzulo J (1984) Comp Biochem Physiol B 79:297–308

    Article  CAS  Google Scholar 

  • Carranza JC, Valadares HMS, D’Ávila DA, Baptista RP, Moreno M, Galvão LMC, Chiari E, Sturm NR, Gontijo ED, Macedo AM, Zingales B (2009) Int J Parasitol 39:963–973

    Google Scholar 

  • Castellani O, Ribeiro LV, Fernandes JF (1967) J Protozool 4:447–451

    Google Scholar 

  • Cazzulo J (1994) J Bioenerg Biomembranes 26:157–165

    Article  CAS  Google Scholar 

  • Coustou V, Besteiro S, Riviere L, Biran M, Biteau N, Franconi J, Boshart M, Baltz T, Bringaud F (2005) J Biol Chem 280:16559–16570

    Article  CAS  Google Scholar 

  • Coustou V, Biran M, Besteiro S, Riviere L, Baltz T, Franconi F, Bringaud F (2006) J Biol Chem 281:26832–26846

    Article  CAS  Google Scholar 

  • Coustou V, Biran M, Breton M, Guegan F, Rivière L, Plazolles N, Nolan D, Barrett MP, Franconi JM, Bringaud F (2008) J Biol Chem 283:16342–16354

    Article  CAS  Google Scholar 

  • Denicola-Seoane A, Rubbo H, Prodanov E, Turrens J (1992) Mol Biochem Parasitol 54:43–50

    Article  CAS  Google Scholar 

  • Fang J, Beattie D (2002) Biochemistry 41:3065–3072

    Article  CAS  Google Scholar 

  • Kashani-Poor N, Zwicker K, Kerscher S, Brandt U (2001) J Biol Chem 276:24082-24087

    Google Scholar 

  • Kowaltowski AJ, Fenton G, Fiskum GZ (2004) Free Radical Biology & Medicine 37:1845–1853

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Free Radic Biol Med May 7. doi:10.1016/j.freeradbiomed.2009.05.004

  • Lazarou M, Mckenzie M, Ohtake A, Thorburn D, Ryan M (2007) Mol Cell Biol 27:4228–4237

    Article  CAS  Google Scholar 

  • Liu Y, Fiskum G, Schubert D (2002) J Neurochem 80:780–787

    Article  CAS  Google Scholar 

  • Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi A, Wajner M, Castilho RF (2004) J Neurochem 90:1025–1035

    Article  CAS  Google Scholar 

  • Maugeri D, Cazzulo J (2004) FEMS Microbiol 234:117–223

    Article  CAS  Google Scholar 

  • Mayevsky A, Rogatsky G (2007) Am J Physiol Cell Physiol 292:615–640

    Article  Google Scholar 

  • Mielniczki-Pereira A, Chiavegatto C, López J, Colli W, Alves MJM, Gadelha F (2007) Acta Trop 101:54–60

    Article  CAS  Google Scholar 

  • Olgun A (2008) Biogerontology Oct 19. doi:10.1007/s10522-008-9190-2

  • Opperdoes F, Michels P (2008) Trends Parasitol 24:310–317

    Article  CAS  Google Scholar 

  • Pineau B, Mathieu C, Gérard-Hirne C, De Paepe R, Chétrit P (2005) J Biol Chem 280:25994–26001

    Article  CAS  Google Scholar 

  • Simpson L, Neckelmann N, de La Cruz VF, Simpson AM, Feagin JE, Jasmer DP, Stuart JE (1987) J Biol Chem 262:6182–6196

    CAS  Google Scholar 

  • Srivastava IK, Rottenberg H, Vaidya AB (1997) J Biol Chem 272:3961–3966

    Article  CAS  Google Scholar 

  • Stuart K, Panigrahi AK, Schnaufer A, Drozdz M, Clayton C, Salavati R (2002) Philos Trans R Soc Lond Biol Sci 357:71–79

    Article  CAS  Google Scholar 

  • Turrens J (1989) Biochem J 259:363–368

    CAS  Google Scholar 

  • Turrens J (2003) J Physiol 552:335–344

    Article  CAS  Google Scholar 

  • Turrens J, Watts B, Zhong L, Docampo R (1996) Mol Biochem Parasitol 82:125–129

    Article  CAS  Google Scholar 

  • Vercesi A, Bernardes C, Hoffmann M, Gadelha F, Docampo R (1991) J Biol Chem 266:14431–14444

    CAS  Google Scholar 

  • Vercesi A, Kowaltowski AJ, Oliveira H, Castilho RF (2006) Frontiers in Bioscience 11:2554–2564

    Article  CAS  Google Scholar 

  • Vonck J, Schäfer E (2008) Biochim Biophys Acta 1793:117–124

    Google Scholar 

  • Westenberger S, Cerqueira G, El-Sayed N, Zingales B, Campbell D, Sturm N (2006) BMC Genomics 7:1–18

    Article  Google Scholar 

  • Yagi T, Seo B, Nakamaru-Ogiso E, Marella M, Barber-Singh J, Yamashita T, Kao M, Matsuno-Yagi A (2006) Rejuvenation Res 9:191–197

    Article  CAS  Google Scholar 

  • Yamato K, Newton K (1999) J Hered 90:369–373

    Article  Google Scholar 

  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland R (1997) Anal Biochem 253:162–168

    Article  CAS  Google Scholar 

  • Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD (2009) PLoS Pathog May 5:e1000436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Zingales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

César Carranza, J., Kowaltowski, A.J., Mendonça, M.A.G. et al. Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex I subunit genes. J Bioenerg Biomembr 41, 299–308 (2009). https://doi.org/10.1007/s10863-009-9228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-009-9228-4

Keywords

Navigation