Skip to main content
Log in

Enhanced alternative oxidase and antioxidant enzymes under Cd2+ stress in Euglena

  • Original Paper
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

To identify some of the mechanisms involved in the high resistance to Cd2+ in the protist Euglena gracilis, we studied the effect of Cd2+ exposure on its energy and oxidative stress metabolism as well as on essential heavy metals homeostasis. In E. gracilis heterotrophic cells, as in other organisms, CdCl2 (50 μM) induced diminution in cell growth, severe oxidative stress accompanied by increased antioxidant enzyme activity and strong perturbation of the heavy metal homeostasis. However, Cd2+ exposure did not substantially modify the cellular respiratory rate or ATP intracellular level, although the activities of respiratory complexes III and IV were strongly decreased. In contrast, an enhanced capacity of the alternative oxidase (AOX) in both intact cells and isolated mitochondria was determined under Cd2+ stress; in fact, AOX activity accounted for 69-91% of total respiration. Western blotting also revealed an increased AOX content in mitochondria from Cd2+-exposed cells. Moreover, AOX was more resistant to Cd2+ inhibition than cytochrome c oxidase in mitochondria from control and Cd2+-exposed cells. Therefore, an enhanced AOX seems to be a relevant component of the resistance mechanism developed by E. gracilis against Cd2+-stress, in addition to the usual increased antioxidant enzyme activity, that enabled cells to maintain a relatively unaltered the energy status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avilés C, Loza-Tavera H, Terry N, Moreno-Sánchez R (2003) Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis. Arch Microbiol 180:1–10

    Article  CAS  Google Scholar 

  • Bergmeyer HU (1974) Methods of enzymatic analysis. Verlag Chemie, Wheinheim

    Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Casiot C, Bruneel O, Personné JC, Leblanc M, Elbaz-Poulichet F (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France). Sci Total Environ 320:259–267

    Article  CAS  Google Scholar 

  • Castro-Guerrero NA, Jasso-Chávez R, Moreno-Sánchez R (2005) Physiological role of rhodoquinone in Euglena gracilis mitochondria. Biochim Biophys Acta 1710:113–121

    Article  CAS  Google Scholar 

  • Castro-Guerrero NA, Krab K, Moreno-Sánchez R (2004) The alternative respiratory pathway of euglena mitochondria. J Bioenerg Biomembr 36:459–469

    Article  CAS  Google Scholar 

  • Chavez E, Briones R, Michel B, Bravo C, Jay D (1985) Evidence for the involvement of dithiol groups in mitochondrial calcium transport: studies with cadmium. Arch Biochem Biophys 242:493–497

    Article  CAS  Google Scholar 

  • Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA, Whelan J (2005) Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58:193–212

    Article  CAS  Google Scholar 

  • Devars S, Aviles C, Cervantes C, Moreno-Sanchez R (2000) Mercury uptake and removal by Euglena gracilis. Arch Microbiol 174:175–180

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  Google Scholar 

  • Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophys Acta 1706:158–164

    Article  CAS  Google Scholar 

  • Geigenberger P, Fernie AR, Gibon Y, Christ M, Stitt M (2000) Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol Chem 381:723–740

    Article  CAS  Google Scholar 

  • Geisler DA, Johansson FI, Svensson AS, Rasmusson AG (2004) Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves. BMC Plant Biol 4:8

    Article  Google Scholar 

  • Gonzalez-Meler MA, Ribas-Carbo M, Giles L, Siedow JN (1999) The effect of growth and measurement temperature on the activity of the alternative respiratory pathway. Plant Physiol 120:765–772

    Article  CAS  Google Scholar 

  • Greenblatt CL, Schiff JA (1959) A pheophytin-like pigment in dark adapted Euglena gracilis. J Protozool 6:23–28

    CAS  Google Scholar 

  • Guelfi A, Azevedo RA, Lea PJ, Molina SM (2003) Growth inhibition of the filamentous fungus Aspergillus nidulans by cadmium: an antioxidant enzyme approach. J Gen Appl Microbiol 49:63–73

    Article  CAS  Google Scholar 

  • Hartwig A (2001) Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal 3:625–634

    Article  CAS  Google Scholar 

  • Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269:29405–29408

    CAS  Google Scholar 

  • Helmerhorst EJ, Murphy MP, Troxler RF, Oppenheim FG (2002) Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim Biophys Acta 1556:73–80

    Article  CAS  Google Scholar 

  • Israr M, Sahi SV, Jain J (2006) Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Arch Environ Contam Toxicol 50:121–127

    Article  CAS  Google Scholar 

  • Jemal F, Zarrouk M, Ghorbal MH (2000) Effect of cadmium on lipid composition of pepper. Biochem Soc Trans 28:907–910

    Article  CAS  Google Scholar 

  • Kanematsu S, Asada K (1979) Ferric and manganic superoxide dismutases in Euglena gracilis. Arch Biochem Biophys 195:535–545

    Article  CAS  Google Scholar 

  • Kitaoka S, Nakano Y, Miyatake K, Yokota A (1989) In: Buetow DE (ed) The biology of Euglena, vol IV. Academic, New York, pp 20–91

  • Lagunas R, Gancedo C (1983) Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae. Eur J Biochem 137:479–483

    Article  CAS  Google Scholar 

  • Liu J, Zhang Y, Huang D, Song G (2005) Cadmium induced MTs synthesis via oxidative stress in yeast Saccharomyces cerevisiae. Mol Cell Biochem 280:139–145

    Article  CAS  Google Scholar 

  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48:687–698

    Google Scholar 

  • Mendoza-Cozatl D, Devars S, Loza-Tavera H, Moreno-Sanchez R (2002) Cadmium accumulation in the chloroplast of Euglena gracilis. Physiol Plant 115:276–283

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl D, Moreno-Sanchez R (2005) Cd2+ transport and storage in the chloroplast of Euglena gracilis. Biochim Biophys Acta 1706:88–97

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Rangel-Gonzalez E, Moreno-Sanchez R (2006a) Simultaneous Cd2+, Zn2+, and Pb2+ uptake and accumulation by photosynthetic Euglena gracilis. Arch Environ Contam Toxicol 51:521–528

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl D, Rodríguez-Zavala JS, Rodríguez-Enríquez S, Mendoza-Hernandez G, Briones-Gallardo R, Moreno-Sánchez R (2006b) Phytochelatin-cadmium-sulfide high molecular weight complexes of Euglena gracilis. FEBS J 273:5703–53313

    Article  CAS  Google Scholar 

  • Montrichard F, Le Guen F, Laval-Martin DL, Davioud-Charvet E (1999) Evidence for the co-existence of glutathione reductase and trypanothione reductase in the non-trypanosomatid Euglenozoa: Euglena gracilis Z. FEBS Lett 442:29–33

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scarvenged by. ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Navarro L, Torres-Marquez ME, Gonzalez-Moreno S, Devars S, Hernández R, Moreno-Sanchez R (1997) Comparison of physiological changes in euglena gracilis during exposure to heavy metals of heterotrophic and autotrophic cells - evolutionary aspects. Comp Biochem Physiol 116C:265–272

    CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of delta-aminolevulinic acid. Biometals Online, 10 January

  • Overbaugh JM (1985) Initial observations on the role of glutathione peroxidases in Euglena. J Free Radic Biol Med 1:187–193

    Article  CAS  Google Scholar 

  • Overbaugh JM, Fall R (1985) Characterization of a selenium-independent glutathione peroxidase from euglena gracilis. Plant Physiol 77:437–442

    Article  CAS  Google Scholar 

  • Patrick L (2003) Toxic metals and antioxidants: part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8:106–128

    Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav) Trin ex Steudel Plant Physiol 133:829–837

    Article  CAS  Google Scholar 

  • Poole RK, Cook GM (2000) Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microbiol Physiol 43:165–224

    Article  CAS  Google Scholar 

  • Putz S, Gelius-Dietrich G, Piotrowski M, Henze K (2005) Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis. Mol Biochem Parasitol 142:212–223

    Article  CAS  Google Scholar 

  • Rolletschek H, Weschke W, Weber H, Wobus U, Borisjuk L (2004) Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. J Exp Bot 55:1351–1359

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LC (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  Google Scholar 

  • Schoenmakers TJ, Visser GJ, Flik G, Theuvenet AP (1992) CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. Biotechniques 12:870–879

    CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1980a) Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase. Biochem J 186:377–380

    Article  CAS  Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1980b) Purification and some properties of L-ascorbic-acid-specific peroxidase in Euglena gracilis Z. Arch Biochem Biophys 201:121–127

    CAS  Google Scholar 

  • Shigeoka S, Onishi T, Nakano Y, Kitaoka S (1987) Characterization and physiological function of glutathione reductase in Euglena gracilis z. Biochem J 242:511–515

    CAS  Google Scholar 

  • Sillen LG, Martell AE (1964) Stability constants of metal-ion complexes. Special Publication Chem Soc 17:754

    Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa–an angiospermic parasite. J Plant Physiol 161:665–674

    Article  CAS  Google Scholar 

  • Sugie A, Naydenov N, Mizuno N, Nakamura C, Takumi S (2006) Overexpression of wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet Syst 81:349–354

    Article  CAS  Google Scholar 

  • Uribe A, Chavez E, Jimenez M, Zazueta C, Moreno-Sanchez R (1994) Characterization of Ca2+ transport in Euglena gracilis mitochondria. Biochim Biophys Acta 1186:107–116

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1992) Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol 100:115–119

    CAS  Google Scholar 

  • Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276:8469–8474

    Article  CAS  Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    Article  CAS  Google Scholar 

  • Wagner AM, Wagner MJ (1997) Changes in mitochondrial respiratory chain components of petunia cells during culture in the presence of antimycin A. Plant Physiol 115:617–622

    CAS  Google Scholar 

  • Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443

    Article  CAS  Google Scholar 

  • Watanabe M, Suzuki T (2002) Involvement of reactive oxygen stress in cadmium-induced cellular damage in Euglena gracilis. Comp Biochem Physiol C Toxicol Pharmacol 131:491–500

    Article  Google Scholar 

  • Watanabe M, Henmi K, Ogawa K, Suzuki T (2003) Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. Comp Biochem Physiol C Toxicol Pharmacol 134:227–234

    Article  Google Scholar 

  • Woods HF, Krebs HA (1973) The effect of glycerol and dihydroxyacetone on hepatic adenine nucleotides. Biochem J 132:55–60

    CAS  Google Scholar 

  • Zhang H, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Moreno-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro-Guerrero, N.A., Rodríguez-Zavala, J.S., Marín-Hernández, A. et al. Enhanced alternative oxidase and antioxidant enzymes under Cd2+ stress in Euglena . J Bioenerg Biomembr 40, 227–235 (2008). https://doi.org/10.1007/s10863-007-9098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-007-9098-6

Keywords

Navigation