Skip to main content
Log in

Achieving pure spin effects by artifact suppression in methyl adiabatic relaxation experiments

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Recent methyl adiabatic relaxation dispersion experiments provide examination of conformational dynamics across a very wide timescale (102–105 s−1) and, particularly, provide insight into the hydrophobic core of proteins and allosteric effects associated with modulators. The experiments require efficient decoupling of 1H and 13C spin interactions, and some artifacts have been discovered, which are associated with the design of the proton decoupling scheme. The experimental data suggest that the original design is valid; however, pulse sequences with either no proton decoupling or proton decoupling with imperfect pulses can potentially exhibit complications in the experiments. Here, we demonstrate that pulse imperfections in the proton decoupling scheme can be dramatically alleviated by using a single composite π pulse and provide pure single-exponential relaxation data. It allows the opportunity to access high-quality methyl adiabatic relaxation dispersion data by removing the cross-correlation between dipole–dipole interaction and chemical shift anisotropy. The resulting high-quality data is illustrated with the binding of an allosteric modulator (G2BR) to the ubiquitin conjugating enzyme Ube2g2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Baum J, Tycko R, Pines A (1985) Broadband and adiabatic inversion of a two-level system by phase-modulated pulses. Phys Rev A 32(6):3435–3447

    Article  ADS  Google Scholar 

  • Boehr DD, Dyson HJ, Wright PE (2006a) An NMR perspective on enzyme dynamics. Chem Rev 106(8):3055–3079

    Article  Google Scholar 

  • Boehr DD, McElheny D, Dyson HJ, Wright PE (2006b) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313(5793):1638–1642

    Article  ADS  Google Scholar 

  • Carver JP, Richards RE (1972) General 2-site solution for chemical exchange produced dependence of T2 upon carr-purcell pulse separation. J Magn Reson 6(1):89–000

    ADS  Google Scholar 

  • Chakrabarti KS, Li J, Das R, Byrd RA (2017) Conformational dynamics and allostery in E2:E3 interactions drive ubiquitination: gp78 and Ube2g2. Structure 25(5):794–805

    Article  Google Scholar 

  • Chao FA, Byrd RA (2016) Geometric approximation: a new computational approach to characterize protein dynamics from NMR adiabatic relaxation dispersion experiments. J Am Chem Soc 138(23):7337–7345

    Article  Google Scholar 

  • Chao FA, Li Y, Zhang Y, Byrd RA (2019) Probing the broad time scale and heterogeneous conformational dynamics in the catalytic core of the Arf-GAP ASAP1 via methyl adiabatic relaxation dispersion. J Am Chem Soc 141(30):11881–11891

    Article  Google Scholar 

  • Das R, Mariano J, Tsai YC, Kalathur RC, Kostova Z, Li J, Tarasov SG, McFeeters RL, Altieri AS, Ji X, Byrd RA, Weissman AM (2009) Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol Cell 34(6):674–685

    Article  Google Scholar 

  • Das R, Liang YH, Mariano J, Li J, Huang T, King A, Tarasov SG, Weissman AM, Ji X, Byrd RA (2013) Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine. EMBO J 32(18):2504–2516

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol Nmr 6(3):277–293

    Article  Google Scholar 

  • Emsley L, Bodenhausen G (1989) Self-refocusing effect of 270-degrees gaussian pulses—applications to selective two-dimensional exchange spectroscopy. J Magn Reson 82(1):211–221

    ADS  Google Scholar 

  • Freeman R, Keeler J (1981) Suppression of artifacts in Two-dimensional J-spectra. J Magn Reson 43(3):484–487

    ADS  Google Scholar 

  • Freeman R, Kempsell SP, Levitt MH (1980) Radiofrequency pulse sequences which compensate their own imperfections. J Magn Reson 38(3):453–479

    ADS  Google Scholar 

  • Garwood M, DelaBarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153(2):155–177

    Article  ADS  Google Scholar 

  • Hansen DF, Vallurupalli P, Kay LE (2008) An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112(19):5898–5904

    Article  Google Scholar 

  • Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hubner CG, Kern D (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450(7171):838–844

    Article  ADS  Google Scholar 

  • Kay LE (2019) Artifacts can emerge in spectra recorded with even the simplest of pulse schemes: an HMQC case study. J Biomol Nmr 73(8–9):423–427

    Article  Google Scholar 

  • Kim J, Ahuja LG, Chao FA, Xia Y, McClendon CL, Kornev AP, Taylor SS, Veglia G (2017) A dynamic hydrophobic core orchestrates allostery in protein kinases. Sci Adv 3(4):e1600663

    Article  ADS  Google Scholar 

  • Kimsey IJ, Szymanski ES, Zahurancik WJ, Shakya A, Xue Y, Chu CC, Sathyamoorthy B, Suo Z, Al-Hashimi HM (2018) Dynamic basis for dG*dT misincorporation via tautomerization and ionization. Nature 554(7691):195–201

    Article  ADS  Google Scholar 

  • Korzhnev DM, Tischenko EV, Arseniev AS (2000) Off-resonance effects in N-15 T-2 CPMG measurements. J Biomol Nmr 17(3):231–237

    Article  Google Scholar 

  • Korzhnev DM, Skrynnikov NR, Millet O, Torchia DA, Kay LE (2002) An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates. J Am Chem Soc 124(36):10743–10753

    Article  Google Scholar 

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327

    Article  Google Scholar 

  • Levitt MH, Freeman R (1979) Nmr population-inversion using a composite pulse. J Magn Reson 33(2):473–476

    ADS  Google Scholar 

  • Levitt MH, Freeman R (1981) Compensation for pulse imperfections in nmr spin-echo experiments. J Magn Reson 43(1):65–80

    ADS  Google Scholar 

  • Loria JP, Rance M, Palmer AG (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121(10):2331–2332

    Article  Google Scholar 

  • Lundstrom P, Vallurupalli P, Religa TL, Dahlquist FW, Kay LE (2007) A single-quantum methyl C-13-relaxation dispersion experiment with improved sensitivity. J Biomol Nmr 38(1):79–88

    Article  Google Scholar 

  • Mangia S, Traaseth NJ, Veglia G, Garwood M, Michaeli S (2010) Probing slow protein dynamics by adiabatic R(1rho) and R(2rho) NMR experiments. J Am Chem Soc 132(29):9979–9981

    Article  Google Scholar 

  • Manu VS, Veglia G (2015) Genetic algorithm optimized triply compensated pulses in NMR spectroscopy. J Magn Reson 260:136–143

    Article  ADS  Google Scholar 

  • Massi F, Johnson E, Wang CY, Rance M, Palmer AG (2004) NMR R-1 rho rotating-frame relaxation with weak radio frequency fields. J Am Chem Soc 126(7):2247–2256

    Article  Google Scholar 

  • Metzger MB, Liang YH, Das R, Mariano J, Li S, Li J, Kostova Z, Byrd RA, Ji X, Weissman AM (2013) A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. Mol Cell 50(4):516–527

    Article  Google Scholar 

  • Nielsen NC, Bildsoe H, Jakobsen HJ, Sorensen OW (1989) Composite refocusing sequences and their application for sensitivity enhancement and multiplicity filtration in inept and 2d correlation spectroscopy. J Magn Reson 85(2):359–380

    ADS  Google Scholar 

  • Palmer AG III (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104(8):3623–3640

    Article  Google Scholar 

  • Palmer AG, Koss H (2019) Chemical exchange. Biol Nmr B 615:177–236

    Article  Google Scholar 

  • Ross A, Czisch M, King GC (1997) Systematic errors associated with the CPMG pulse sequence and their effect on motional analysis of biomolecules. J Magn Reson 124(2):355–365

    Article  ADS  Google Scholar 

  • Tannus A, Garwood M (1997) Adiabatic pulses. NMR Biomed 10(8):423–434

    Article  Google Scholar 

  • Trott O, Abergel D, Palmer AG (2003) An average-magnetization analysis of R-1 rho relaxation outside of the fast exchange. Mol Phys 101(6):753–763

    Article  ADS  Google Scholar 

  • Tzeng SR, Kalodimos CG (2009) Dynamic activation of an allosteric regulatory protein. Nature 462(7271):368–372

    Article  ADS  Google Scholar 

  • Warren WS, Silver MS (1988) The art of pulse crafting: applications to magnetic resonance and laser spectroscopy. In: Waugh JS (ed) Advances in magnetic and optical resonance. Academic Press, New York, pp 247–384

    Google Scholar 

  • Xia YL, Rossi P, Subrahmanian MV, Huang CD, Saleh T, Olivieri C, Kalodimos CG, Veglia G (2017) Enhancing the sensitivity of multidimensional NMR experiments by using triply-compensated pi pulses. J Biomol Nmr 69(4):237–243

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the use of the Biophysics Resource, Structural Biophysics Laboratory, and the assistance of Dr. Sergey Tarasov and Ms. Marzena Dyba. The research was supported by the Intramural Research Program of the National Cancer Institute, Projects ZIA BC 011131 and ZIA BC 011132. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Andrew Byrd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, FA., Khago, D. & Byrd, R.A. Achieving pure spin effects by artifact suppression in methyl adiabatic relaxation experiments. J Biomol NMR 74, 223–228 (2020). https://doi.org/10.1007/s10858-020-00312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-020-00312-2

Keywords

Navigation